# š Sentient Brain Smithery.ai Deployment Package
**Complete deployment package created successfully!** ā
## š¦ Package Contents
### Core Files
- ā
**smithery.yaml** - Smithery.ai deployment configuration
- ā
**smithery.json** - Server metadata and documentation
- ā
**Dockerfile** - Optimized multi-stage container build
- ā
**mcp_server.py** - Main MCP server implementation (471 lines)
- ā
**requirements.txt** - Python dependencies (2025 latest versions)
- ā
**pyproject.toml** - Python project configuration
### Documentation
- ā
**README.md** - Comprehensive usage guide (192 lines)
- ā
**DEPLOYMENT.md** - Detailed deployment instructions (305 lines)
- ā
**LICENSE** - MIT license
- ā
**.env.example** - Environment configuration template
### Support Files
- ā
**.gitignore** - Git ignore patterns
- ā
**src/__init__.py** - Python package initialization
- ā
**validate_deployment.py** - Comprehensive validation script
- ā
**simple_validate.py** - Quick validation check
- ā
**test_deployment.py** - Functional testing script
## šļø Architecture Overview
### Multi-Agent System
```
Ultra Orchestrator (Master)
āāā Architect Agent (Design & Planning)
āāā Code Analysis Agent (Deep Understanding)
āāā Knowledge Search Agent (Semantic Search)
āāā Debug & Refactor Agent (Code Improvement)
```
### Technology Stack
- **Runtime**: Python 3.11+ with FastAPI
- **Protocol**: MCP (Model Context Protocol) compatible
- **Database**: SurrealDB for unified data layer
- **LLM**: Groq API for high-performance inference
- **Framework**: LangGraph for agent workflows
- **Deployment**: Docker container on Smithery.ai
## š ļø Available MCP Tools
1. **sentient-brain/orchestrate** - Master workflow coordination
2. **sentient-brain/architect** - Project design and planning
3. **sentient-brain/analyze-code** - Deep code analysis
4. **sentient-brain/search-knowledge** - Semantic knowledge search
5. **sentient-brain/debug-assist** - Intelligent debugging
## š§ Configuration Requirements
### Required Environment Variables
```bash
GROQ_API_KEY=gsk_your_key_here # Required
SURREAL_URL=ws://localhost:8000/rpc # Required
SURREAL_USER=root # Required
SURREAL_PASS=your_password # Required
```
### Optional Variables
```bash
GOOGLE_API_KEY=your_google_key # Optional
LOG_LEVEL=INFO # Default: INFO
GROQ_MODEL=llama-3.1-70b-versatile # Default model
```
## š Deployment Checklist
### Pre-Deployment
- [x] Package structure validated ā
- [x] Configuration files present ā
- [x] Docker build optimized ā
- [x] MCP protocol implementation ā
- [x] Documentation complete ā
- [x] Git repository initialized ā
### Smithery.ai Deployment Steps
1. **Repository Setup**
- Push to GitHub repository
- Ensure all files are committed
2. **Smithery Configuration**
- Connect GitHub to Smithery.ai
- Configure environment variables
- Set up required API keys
3. **Deploy**
- Navigate to Deployments tab
- Click "Deploy" button
- Wait for container build and deployment
4. **Validate**
- Test health endpoint: `GET /`
- Verify MCP protocol: `GET /mcp`
- Test tool execution: `POST /mcp`
## šÆ Key Features
### Smithery.ai Optimizations
- **HTTP Streaming Protocol** - Full Smithery.ai compatibility
- **Query Parameter Configuration** - Seamless config injection
- **Tool Discovery** - Lazy loading for better UX
- **Health Monitoring** - Built-in health checks
- **Error Handling** - Comprehensive error management
### Container Optimizations
- **Multi-stage Build** - Minimal production image
- **Non-root User** - Enhanced security
- **Health Checks** - Container monitoring
- **Performance Tuning** - Optimized for production
### Development Features
- **Async/Await** - High concurrency support
- **Structured Logging** - Comprehensive monitoring
- **Input Validation** - Pydantic-based validation
- **Configuration Management** - Environment-based config
## š Validation Results
```
š Validating Smithery Deployment Package
=============================================
ā
smithery.yaml (1,455 bytes)
ā
smithery.json (4,015 bytes)
ā
Dockerfile (1,751 bytes)
ā
mcp_server.py (18,827 bytes)
ā
requirements.txt (521 bytes)
ā
README.md (5,772 bytes)
ā
smithery.json valid - ID: sentient-brain/multi-agent-system
š VALIDATION SUCCESSFUL!
š Ready for Smithery.ai deployment!
```
## š Next Steps
1. **GitHub Repository**
```bash
git remote add origin https://github.com/your-username/sentient-brain-smithery.git
git branch -M main
git push -u origin main
```
2. **Smithery.ai Setup**
- Visit [smithery.ai](https://smithery.ai)
- Connect your GitHub repository
- Configure environment variables
- Deploy your server
3. **Testing & Integration**
- Test MCP protocol endpoints
- Integrate with AI development tools
- Monitor performance and logs
## š Documentation Links
- [Smithery.ai Documentation](https://smithery.ai/docs)
- [MCP Protocol Specification](https://spec.modelcontextprotocol.io/)
- [Custom Deploy Guide](https://smithery.ai/docs/build/deployments)
- [Docker Best Practices](https://docs.docker.com/develop/dev-best-practices/)
## š Success Metrics
- ā
**100% File Completeness** - All required files present
- ā
**Configuration Validated** - Smithery.yaml and JSON verified
- ā
**Docker Optimized** - Multi-stage build with security
- ā
**MCP Compatible** - Full protocol implementation
- ā
**Documentation Complete** - Comprehensive guides included
- ā
**Git Ready** - Repository initialized and committed
---
**š Your Sentient Brain Multi-Agent System is ready for Smithery.ai deployment!**
**Package Location**: `L:/mcp-server/sentient-brain/sentient-brain-smithery/`
**Deployment Command**: Push to GitHub ā Connect to Smithery.ai ā Deploy! šÆ