Skip to main content
Glama
mberg

Kokoro Text to Speech MCP Server

by mberg

text_to_speech

Convert text to speech using Kokoro TTS technology, generating MP3 audio files with customizable voice, speed, and language settings.

Instructions

Convert text to speech using the Kokoro TTS service. Args: text: The text to convert to speech voice: Voice ID to use (default: af_heart) speed: Speech speed (default: 1.0) lang: Language code (default: en-us) filename: Optional filename for the MP3 (default: auto-generated UUID) upload_to_s3: Whether to upload to S3 if enabled (default: True) Returns: A dictionary with information about the generated audio file

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
textYes
voiceNoen_sarah
speedNo
langNoen-us
filenameNo
upload_to_s3No

Implementation Reference

  • The MCP tool handler for 'text_to_speech', registered via @mcp.tool() decorator. It prepares request data from arguments and delegates to the server's process_tts_request method for execution.
    @mcp.tool() async def text_to_speech(text: str, voice: str = os.environ.get('TTS_VOICE', 'af_heart'), speed: float = float(os.environ.get('TTS_SPEED', 1.0)), lang: str = os.environ.get('TTS_LANGUAGE', 'en-us'), filename: str = None, upload_to_s3: bool = os.environ.get('S3_ENABLED', 'true').lower() == 'true') -> dict: """ Convert text to speech using the Kokoro TTS service. Args: text: The text to convert to speech voice: Voice ID to use (default: af_heart) speed: Speech speed (default: 1.0) lang: Language code (default: en-us) filename: Optional filename for the MP3 (default: auto-generated UUID) upload_to_s3: Whether to upload to S3 if enabled (default: True) Returns: A dictionary with information about the generated audio file """ request_data = { "text": text, "voice": voice, "speed": speed, "lang": lang, "filename": filename, "upload_to_s3": upload_to_s3 } return await mcp_tts_server.process_tts_request(request_data)
  • mcp-tts.py:495-495 (registration)
    Registration of the 'text_to_speech' tool using the FastMCP @tool() decorator.
    @mcp.tool()
  • Helper method in MCPTTSServer class that implements the core TTS logic: parameter extraction, audio generation with Kokoro TTS, local file saving, optional S3 upload, and response formatting.
    async def process_tts_request(self, request_data): """Process a TTS request and return a JSON response.""" try: if not TTS_AVAILABLE: return { "success": False, "error": "TTS service is not available. Missing required modules." } text = request_data.get('text', '') voice = request_data.get('voice', os.environ.get('TTS_VOICE', 'af_heart')) speed = float(request_data.get('speed', 1.0)) lang = request_data.get('lang', 'en-us') filename = request_data.get('filename', None) upload_to_s3_flag = request_data.get('upload_to_s3', True) if not text: return {"success": False, "error": "No text provided"} if not filename: filename = str(uuid.uuid4()) if not filename.endswith('.mp3'): filename += '.mp3' filename = secure_filename(filename) os.makedirs(MP3_FOLDER, exist_ok=True) mp3_path = os.path.join(MP3_FOLDER, filename) mp3_filename = os.path.basename(mp3_path) print(f"Generating audio for: {text[:50]}{'...' if len(text) > 50 else ''}") print(f"Using voice: {voice}, speed: {speed}, language: {lang}") print(f"Output file: {mp3_path}") loop = asyncio.get_running_loop() try: # Attempt primary parameter format result = await loop.run_in_executor( None, lambda: tts_service.generate_audio( text=text, output_file=mp3_path, voice=voice, speed=speed, lang=lang ) ) if isinstance(result, dict) and not result.get('success', True): print(f"TTS service returned an error: {result}") # Log the result for debugging return { "success": False, "error": result.get('error', 'Unknown TTS generation error'), "tts_result": result, # Include full TTS service response "request_params": { "text": text, "voice": voice, "speed": speed, "lang": lang, "filename": filename }, "timestamp": datetime.datetime.now().isoformat() } except TypeError as e: print(f"TypeError in TTS service call: {e}") print("Trying alternative parameter format...") result = await loop.run_in_executor( None, lambda: tts_service.generate_audio( text, mp3_path, voice=voice, speed=speed ) ) if not os.path.exists(mp3_path): return { "success": False, "error": "Failed to generate audio file" } file_size = os.path.getsize(mp3_path) print(f"Audio generated successfully. File size: {file_size} bytes") response_data = { "success": True, "message": "Audio generated successfully", "filename": mp3_filename, "file_size": file_size, "path": mp3_path, "s3_uploaded": False } if upload_to_s3_flag: print(f"Uploading {mp3_filename} to S3...") s3_url = self.upload_to_s3(mp3_path, mp3_filename) if s3_url: response_data["s3_uploaded"] = True response_data["s3_url"] = s3_url # Delete local file if configured to do so if os.environ.get('DELETE_LOCAL_AFTER_S3_UPLOAD', '').lower() in ('true', '1', 'yes'): try: print(f"Removing local file {mp3_path} after successful S3 upload") os.remove(mp3_path) response_data["local_file_kept"] = False except Exception as e: print(f"Error removing local file after S3 upload: {e}") response_data["local_file_kept"] = True else: response_data["local_file_kept"] = True else: response_data["s3_uploaded"] = False response_data["s3_error"] = "S3 upload failed" return response_data except Exception as e: print(f"Error processing TTS request: {str(e)}") import traceback traceback.print_exc() return { "success": False, "error": str(e) }
  • Input schema defined by function parameters with type hints and defaults, plus detailed docstring describing args and return type.
    async def text_to_speech(text: str, voice: str = os.environ.get('TTS_VOICE', 'af_heart'), speed: float = float(os.environ.get('TTS_SPEED', 1.0)), lang: str = os.environ.get('TTS_LANGUAGE', 'en-us'), filename: str = None, upload_to_s3: bool = os.environ.get('S3_ENABLED', 'true').lower() == 'true') -> dict: """ Convert text to speech using the Kokoro TTS service. Args: text: The text to convert to speech voice: Voice ID to use (default: af_heart) speed: Speech speed (default: 1.0) lang: Language code (default: en-us) filename: Optional filename for the MP3 (default: auto-generated UUID) upload_to_s3: Whether to upload to S3 if enabled (default: True) Returns: A dictionary with information about the generated audio file """

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mberg/kokoro-tts-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server