Skip to main content
Glama

Playwright MCP

loopClaude.ts5.51 kB
/** * Copyright (c) Microsoft Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import type Anthropic from '@anthropic-ai/sdk'; import type { LLMDelegate, LLMConversation, LLMToolCall, LLMTool } from './loop.js'; import type { Tool } from '@modelcontextprotocol/sdk/types.js'; const model = 'claude-sonnet-4-20250514'; export class ClaudeDelegate implements LLMDelegate { private _anthropic: Anthropic | undefined; async anthropic(): Promise<Anthropic> { if (!this._anthropic) { const anthropic = await import('@anthropic-ai/sdk'); this._anthropic = new anthropic.Anthropic(); } return this._anthropic; } createConversation(task: string, tools: Tool[], oneShot: boolean): LLMConversation { const llmTools: LLMTool[] = tools.map(tool => ({ name: tool.name, description: tool.description || '', inputSchema: tool.inputSchema, })); if (!oneShot) { llmTools.push({ name: 'done', description: 'Call this tool when the task is complete.', inputSchema: { type: 'object', properties: {}, }, }); } return { messages: [{ role: 'user', content: task }], tools: llmTools, }; } async makeApiCall(conversation: LLMConversation): Promise<LLMToolCall[]> { // Convert generic messages to Claude format const claudeMessages: Anthropic.Messages.MessageParam[] = []; for (const message of conversation.messages) { if (message.role === 'user') { claudeMessages.push({ role: 'user', content: message.content }); } else if (message.role === 'assistant') { const content: Anthropic.Messages.ContentBlock[] = []; // Add text content if (message.content) { content.push({ type: 'text', text: message.content, citations: [] }); } // Add tool calls if (message.toolCalls) { for (const toolCall of message.toolCalls) { content.push({ type: 'tool_use', id: toolCall.id, name: toolCall.name, input: toolCall.arguments }); } } claudeMessages.push({ role: 'assistant', content }); } else if (message.role === 'tool') { // Tool results are added differently - we need to find if there's already a user message with tool results const lastMessage = claudeMessages[claudeMessages.length - 1]; const toolResult: Anthropic.Messages.ToolResultBlockParam = { type: 'tool_result', tool_use_id: message.toolCallId, content: message.content, is_error: message.isError, }; if (lastMessage && lastMessage.role === 'user' && Array.isArray(lastMessage.content)) { // Add to existing tool results message (lastMessage.content as Anthropic.Messages.ToolResultBlockParam[]).push(toolResult); } else { // Create new tool results message claudeMessages.push({ role: 'user', content: [toolResult] }); } } } // Convert generic tools to Claude format const claudeTools: Anthropic.Messages.Tool[] = conversation.tools.map(tool => ({ name: tool.name, description: tool.description, input_schema: tool.inputSchema, })); const anthropic = await this.anthropic(); const response = await anthropic.messages.create({ model, max_tokens: 10000, messages: claudeMessages, tools: claudeTools, }); // Extract tool calls and add assistant message to generic conversation const toolCalls = response.content.filter(block => block.type === 'tool_use') as Anthropic.Messages.ToolUseBlock[]; const textContent = response.content.filter(block => block.type === 'text').map(block => (block as Anthropic.Messages.TextBlock).text).join(''); const llmToolCalls: LLMToolCall[] = toolCalls.map(toolCall => ({ name: toolCall.name, arguments: toolCall.input as any, id: toolCall.id, })); // Add assistant message to generic conversation conversation.messages.push({ role: 'assistant', content: textContent, toolCalls: llmToolCalls.length > 0 ? llmToolCalls : undefined }); return llmToolCalls; } addToolResults( conversation: LLMConversation, results: Array<{ toolCallId: string; content: string; isError?: boolean }> ): void { for (const result of results) { conversation.messages.push({ role: 'tool', toolCallId: result.toolCallId, content: result.content, isError: result.isError, }); } } checkDoneToolCall(toolCall: LLMToolCall): string | null { if (toolCall.name === 'done') return (toolCall.arguments as { result: string }).result; return null; } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/maywzh/playwright-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server