Skip to main content
Glama
README.md4.02 kB
# Jupyter MCP End-to-End Test Suite ## Overview This test suite validates the complete functionality of the UV-first Jupyter MCP server, including Claude integration, error recovery, and the exact usage patterns Claude should follow. ## Claude Usage Pattern Tests This test suite validates the exact patterns Claude should use: ```python # 1. Always start with initialization result = jupyter_initialize(working_dir='.') session_id = result['session_id'] # 2. Execute code with rich feedback jupyter_execute_cell(session_id, "import pandas as pd") # 3. If ImportError, install via UV (NEVER pip!) jupyter_ensure_dependencies(session_id, ['pandas']) # 4. Get help when needed jupyter_get_guidance('fix_error', context={'error_type': 'ModuleNotFoundError'}) ``` ## Quick Start 1. **Setup test environment:** ```bash ./test/setup_test_env.sh ``` 2. **Run all tests:** ```bash ./test/run_tests.sh ``` 3. **Run with Cursor integration:** ```bash ./test/run_tests.sh --with-cursor ``` 4. **Cleanup:** ```bash ./test/cleanup.sh ``` ## Test Structure ``` test/ ├── setup_test_env.sh # Setup test environment and MCP ├── run_tests.sh # Main test runner ├── cleanup.sh # Cleanup script │ ├── core_tests/ # Core functionality tests │ ├── test_01_installation.py │ ├── test_02_initialization.py │ ├── test_03_execution.py │ └── test_04_error_recovery.py │ ├── integration_tests/ # Claude CLI integration │ ├── test_claude_patterns.sh │ ├── test_module_import_flow.sh │ └── test_guidance_system.sh │ ├── workflows/ # Real-world scenarios │ ├── test_complete_workflow.py │ ├── test_uv_package_mgmt.py │ └── test_deployment.py │ └── test_workspace/ # Managed test workspace └── current/ # Active test directory ``` ## Test Coverage ### Core Tests - ✅ MCP installation and registration - ✅ UV environment detection and creation - ✅ Kernel daemon lifecycle - ✅ Code execution with persistence - ✅ Error handling and recovery ### Integration Tests - ✅ Claude CLI tool invocation - ✅ Import error → UV install → retry flow - ✅ Guidance system functionality - ✅ Multi-turn conversations ### Workflow Tests - ✅ Complete initialization → execution → error → fix flow - ✅ UV-centric package management (no pip!) - ✅ Data science workflow - ✅ Deployment validation ## Key Validations 1. **UV-Centric Approach** - All package management uses UV - Never uses pip directly - Maintains uv.lock consistency 2. **Session Management** - All operations use session_id - State persists across calls - Clean kernel lifecycle 3. **Rich Error Handling** - Errors include fix suggestions - Auto-recovery for common issues - Guidance tools provide help 4. **Claude Integration** - MCP tools work via Claude CLI - Proper tool registration - Clean uninstall ## Running Specific Tests ### Test MCP Installation Only ```bash python test/core_tests/test_01_installation.py ``` ### Test Claude Patterns Only ```bash bash test/integration_tests/test_claude_patterns.sh ``` ### Test Complete Workflow ```bash python test/workflows/test_complete_workflow.py ``` ## Debugging If tests fail, check: 1. **MCP Registration:** ```bash claude mcp list ``` 2. **Kernel Status:** ```bash cat .kernel_daemon.lock ps aux | grep kernel_daemon ``` 3. **Test Logs:** ```bash cat test/test_workspace/current/test.log ``` ## Expected Test Duration - Quick tests: ~5 minutes - Full test suite: ~10-15 minutes - With Cursor integration: ~20 minutes ## Success Criteria All tests should pass with: - ✅ No orphaned processes - ✅ Clean MCP registration/deregistration - ✅ No port conflicts - ✅ Workspace is reusable - ✅ UV handles all package management

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mayank-ketkar-sf/ClaudeJupy'

If you have feedback or need assistance with the MCP directory API, please join our Discord server