Skip to main content
Glama

Gemini RAG MCP Server

by masseater
README.md3.2 kB
# Gemini RAG MCP Server A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Google's Gemini API File Search feature. This server enables AI applications to create knowledge bases and retrieve information from uploaded documents. ## Features - ✅ **File Search RAG**: Create and manage knowledge bases using Gemini's File Search API - ✅ **Document Upload**: Upload files and text content to create searchable knowledge bases - ✅ **Information Retrieval**: Query knowledge bases to retrieve relevant information - ✅ **Configurable Models**: Choose Gemini models via environment variable - ✅ **MCP Protocol**: Full compatibility with Model Context Protocol - ✅ **Type-Safe**: Full TypeScript support with strict mode enabled - ✅ **Dual Transport Support**: stdio (default) and HTTP transports - ✅ **Production-Ready**: Logging, error handling, and configuration management ## Prerequisites - Node.js >= 22.10.0 - pnpm >= 10.19.0 - Google API Key with Gemini API access ## Installation ### Using with Claude Desktop (Recommended) Add the following to your Claude Desktop configuration file: **macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json` **Windows**: `%APPDATA%\Claude\claude_desktop_config.json` ```json { "mcpServers": { "gemini-rag-mcp": { "command": "npx", "args": ["-y", "@r_masseater/gemini-rag-mcp"], "env": { "GOOGLE_API_KEY": "your_google_api_key_here", "STORE_DISPLAY_NAME": "your_store_name" } } } } ``` **Required Environment Variables:** - `GOOGLE_API_KEY`: Your Google API key with Gemini API access - `STORE_DISPLAY_NAME`: Display name for your vector store/knowledge base **Optional Environment Variables:** - `GEMINI_MODEL`: Gemini model to use for queries (default: `gemini-2.5-pro`) - Options: `gemini-2.5-pro`, `gemini-2.5-flash` After configuration, restart Claude Desktop to load the server. ## Development ### 1. Clone the repository ```bash git clone https://github.com/masseater/gemini-rag-mcp.git cd gemini-rag-mcp ``` ### 2. Install dependencies ```bash pnpm install ``` ### 3. Run in development mode ```bash # stdio transport (default) pnpm run dev # HTTP transport (with hot reload) pnpm run dev:http ``` ## Environment Variables **Required:** - `GOOGLE_API_KEY`: Google API key with Gemini API access - `STORE_DISPLAY_NAME`: Display name for vector store/knowledge base **Optional:** - `GEMINI_MODEL`: Gemini model for queries (default: gemini-2.5-pro) - `LOG_LEVEL`: Logging level (error|warn|info|debug, default: info) - `DEBUG`: Enable debug console output (true|false, default: false) - `PORT`: HTTP server port (default: 3000) ## Available Tools Once configured with Claude Desktop, the following tools are available: - **upload_file**: Upload document files to the knowledge base - **upload_content**: Upload text content directly to the knowledge base - **query**: Query the knowledge base using RAG ## Resources - [Model Context Protocol Documentation](https://modelcontextprotocol.io) - [Gemini API Documentation](https://ai.google.dev/gemini-api/docs) ## License MIT License

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/masseater/gemini-rag-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server