Skip to main content
Glama

export_waveform

Export captured waveform data from PicoScope oscilloscopes to CSV, JSON, or NumPy files for analysis and sharing.

Instructions

Export captured waveform data to file.

Args: format: Export format (csv, json, or numpy). channels: List of channels to export. filename: Output filename (without extension).

Returns: Dictionary containing export status and file path.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
formatNocsv
channelsNo
filenameNowaveform

Implementation Reference

  • The core handler function for the 'export_waveform' tool. It defines the input parameters (serving as schema via type hints), docstring, and placeholder logic for exporting waveform data.
    def export_waveform( format: Literal["csv", "json", "numpy"] = "csv", channels: list[str] = ["A"], filename: str = "waveform", ) -> dict[str, Any]: """Export captured waveform data to file. Args: format: Export format (csv, json, or numpy). channels: List of channels to export. filename: Output filename (without extension). Returns: Dictionary containing export status and file path. """ # TODO: Implement waveform export return { "status": "not_implemented", "format": format, "channels": channels, "filename": filename, }
  • Registers the advanced tools module, which includes the 'export_waveform' tool, on the MCP server instance.
    register_advanced_tools(mcp)
  • Imports the registration function for advanced tools, which defines and registers 'export_waveform'.
    from .tools.advanced import register_advanced_tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/markuskreitzer/picoscope_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server