Skip to main content
Glama

MCP Image Recognition Server

MCP Image Recognition Server

An MCP server that provides image recognition capabilities using Anthropic and OpenAI vision APIs. Version 0.1.2.

Features

  • Image description using Anthropic Claude Vision or OpenAI GPT-4 Vision
  • Support for multiple image formats (JPEG, PNG, GIF, WebP)
  • Configurable primary and fallback providers
  • Base64 and file-based image input support
  • Optional text extraction using Tesseract OCR

Requirements

  • Python 3.8 or higher
  • Tesseract OCR (optional) - Required for text extraction feature
    • Windows: Download and install from UB-Mannheim/tesseract
    • Linux: sudo apt-get install tesseract-ocr
    • macOS: brew install tesseract

Installation

  1. Clone the repository:
git clone https://github.com/mario-andreschak/mcp-image-recognition.git cd mcp-image-recognition
  1. Create and configure your environment file:
cp .env.example .env # Edit .env with your API keys and preferences
  1. Build the project:
build.bat

Usage

Running the Server

Spawn the server using python:

python -m image_recognition_server.server

Start the server using batch instead:

run.bat server

Start the server in development mode with the MCP Inspector:

run.bat debug

Available Tools

  1. describe_image
    • Input: Base64-encoded image data and MIME type
    • Output: Detailed description of the image
  2. describe_image_from_file
    • Input: Path to an image file
    • Output: Detailed description of the image

Environment Configuration

  • ANTHROPIC_API_KEY: Your Anthropic API key.
  • OPENAI_API_KEY: Your OpenAI API key.
  • VISION_PROVIDER: Primary vision provider (anthropic or openai).
  • FALLBACK_PROVIDER: Optional fallback provider.
  • LOG_LEVEL: Logging level (DEBUG, INFO, WARNING, ERROR).
  • ENABLE_OCR: Enable Tesseract OCR text extraction (true or false).
  • TESSERACT_CMD: Optional custom path to Tesseract executable.
  • OPENAI_MODEL: OpenAI Model (default: gpt-4o-mini). Can use OpenRouter format for other models (e.g., anthropic/claude-3.5-sonnet:beta).
  • OPENAI_BASE_URL: Optional custom base URL for the OpenAI API. Set to https://openrouter.ai/api/v1 for OpenRouter.
  • OPENAI_TIMEOUT: Optional custom timeout (in seconds) for the OpenAI API.

Using OpenRouter

OpenRouter allows you to access various models using the OpenAI API format. To use OpenRouter, follow these steps:

  1. Obtain an OpenAI API key from OpenRouter.
  2. Set OPENAI_API_KEY in your .env file to your OpenRouter API key.
  3. Set OPENAI_BASE_URL to https://openrouter.ai/api/v1.
  4. Set OPENAI_MODEL to the desired model using the OpenRouter format (e.g., anthropic/claude-3.5-sonnet:beta).
  5. Set VISION_PROVIDER to openai.

Default Models

  • Anthropic: claude-3.5-sonnet-beta
  • OpenAI: gpt-4o-mini
  • OpenRouter: Use the anthropic/claude-3.5-sonnet:beta format in OPENAI_MODEL.

Development

Running Tests

Run all tests:

run.bat test

Run specific test suite:

run.bat test server run.bat test anthropic run.bat test openai

Docker Support

Build the Docker image:

docker build -t mcp-image-recognition .

Run the container:

docker run -it --env-file .env mcp-image-recognition

License

MIT License - see LICENSE file for details.

Release History

  • 0.1.2 (2025-02-20): Improved OCR error handling and added comprehensive test coverage for OCR functionality
  • 0.1.1 (2025-02-19): Added Tesseract OCR support for text extraction from images (optional feature)
  • 0.1.0 (2025-02-19): Initial release with Anthropic and OpenAI vision support
Install Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

使用 Anthropic Claude Vision 和 OpenAI GPT-4 Vision API 提供图像识别功能,支持多种图像格式并通过 Tesseract OCR 提供可选的文本提取。

  1. 作者
    1. 特征
      1. 要求
        1. 安装
          1. 选项 1:使用 uvx(推荐用于 Claude Desktop 和 Cursor)
          2. 选项 2:使用 Docker
          3. 选项 3:从源头
        2. 一体化
          1. Claude 桌面集成
          2. 光标集成
          3. Docker 集成
        3. 用法
          1. 直接运行服务器
          2. 可用工具
          3. 环境配置
          4. 使用 OpenRouter
          5. 默认模型
        4. 发展
          1. 开发设置指南
          2. 运行测试
          3. Docker 支持
        5. 执照
          1. 使用 Cloudflare Workers AI
        6. 与人工智能助手一起使用
          1. 发布历史
            1. 执照
              1. 贡献
                1. 发布新版本

              Related MCP Servers

              • A
                security
                A
                license
                A
                quality
                A server that accepts image URLs and analyzes their content using GPT-4-turbo, enabling Claude AI assistants to understand and describe images through natural language.
                Last updated -
                1
                1
                6
                JavaScript
                MIT License
              • A
                security
                A
                license
                A
                quality
                This is a server implementation for performing Optical Character Recognition (OCR) using the Google Cloud Vision API. It is built on top of the FastMCP framework, which allows for the creation of modular and extensible command processing tools.
                Last updated -
                1
                1
                Python
                MIT License
                • Apple
              • A
                security
                A
                license
                A
                quality
                A server that enables OCR capabilities to recognize text from images, PDFs, and Word documents, convert them to Markdown, and extract key information.
                Last updated -
                3
                35
                19
                JavaScript
                MIT License
              • -
                security
                A
                license
                -
                quality
                Provides tools for generating and editing images using OpenAI's gpt-image-1 model via an MCP interface, enabling AI assistants to create and modify images based on text prompts.
                Last updated -
                16
                Python
                Apache 2.0
                • Linux
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/mario-andreschak/mcp-image-recognition'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server