Skip to main content
Glama

Store MCP Server

A Model Context Protocol (MCP) server that enables AI agents to store and retrieve information persistently.

Project Structure

store_mcp/ ├── README.md # This file ├── pyproject.toml # Project dependencies and configuration ├── src/ │ └── store_mcp/ │ ├── __init__.py # Package initialization │ ├── server.py # Main MCP server implementation │ └── storage.py # Storage backend (JSON/SQLite) └── tests/ ├── __init__.py └── test_server.py # Unit tests

Features

  • Store Information: Save key-value pairs or structured data

  • Retrieve Information: Query stored data by key or search criteria

  • List Keys: View all available stored keys

  • Delete Information: Remove stored data when no longer needed

  • Persistent Storage: Data persists across sessions

Installation

# Install dependencies pip install -e .

Usage

# Run the MCP server python -m store_mcp.server

MCP Tools

The server exposes the following tools to AI agents:

  • store_data: Store information with a key

  • retrieve_data: Retrieve information by key

  • list_keys: List all stored keys

  • delete_data: Delete stored information by key

  • search_data: Search stored information by pattern or content

Configuration

MCP Client Configuration

To use this server with an MCP client (like Claude Desktop), add it to your MCP settings configuration file:

For Claude Desktop on MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json

For Claude Desktop on Windows: %APPDATA%\Claude\claude_desktop_config.json

{ "mcpServers": { "store": { "command": "python", "args": [ "-m", "store_mcp.server" ], "env": { "PYTHONPATH": "/absolute/path/to/store_mcp/src" } } } }

Alternative using uvx (if installed via pip):

{ "mcpServers": { "store": { "command": "uvx", "args": [ "--from", "/absolute/path/to/store_mcp", "python", "-m", "store_mcp.server" ] } } }

Storage Configuration

The server uses a local file-based storage system (JSON) located at:

  • Default: ~/.store_mcp/data.json

To use a custom storage location, modify server.py and initialize Storage with a custom path:

storage = Storage("/path/to/custom/data.json")

Environment Variables

You can set the following environment variables:

  • STORE_MCP_PATH: Custom path for the storage file (default: ~/.store_mcp/data.json)

Example configuration with custom storage path:

{ "mcpServers": { "store": { "command": "python", "args": ["-m", "store_mcp.server"], "env": { "PYTHONPATH": "/absolute/path/to/store_mcp/src", "STORE_MCP_PATH": "/custom/path/to/storage.json" } } } }

Development

# Run tests pytest tests/

Requirements

  • Python 3.10+

  • mcp library

-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mariano-cecowski/store_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server