Skip to main content
Glama
EventHorizon.md6.25 kB
## EventHorizon Theory Evolution System ### **Project Overview** Create a Python application that evolves theoretical solutions (physics, mathematics, etc.) using LLM ensembles and genetic algorithm principles. The system should iteratively improve solutions through multiple generations based on consistency check evaluations. ### **Core Architecture Requirements** **1. Input Handler Component** - Accept problem statement as text input - Accept multiple consistency checks as separate text inputs - Validate and structure inputs for processing - Support file input and direct text input methods **2. LLM Integration Layer** - **Primary Model**: Use OpenRouter API for solution generation - **Evaluator Models**: Use separate LLM instances for consistency scoring - Implement API key management and endpoint configuration - Add rate limiting and error handling for API calls - Support multiple model types (GPT-4, Claude, etc.) through OpenRouter **3. Evolution Engine** ```python class EventHorizonEngine: - population_size: int - max_generations: int - consistency_checks: List[str] - current_generation: int - population: List[Solution] ``` **4. Solution Evaluation System** - **Scoring Framework**: Each solution evaluated against all consistency checks - **Score Range**: 0.0 to 1.0 for each consistency check - **Aggregation**: Track individual and composite scores - **Evaluation Prompt Template**: Standardized prompts for consistent scoring ### **Algorithm Implementation** **Generation Flow:** 1. **Initial Population**: Generate N solutions using base LLM 2. **Evaluation Phase**: Score each solution against all consistency checks 3. **Selection Phase**: Identify best-performing aspects per consistency check 4. **Crossover Phase**: Combine best elements to create next generation 5. **Mutation Phase**: Introduce variations to prevent local optima 6. **Repeat**: Continue until convergence or max generations reached **Crossover Strategy:** ```python def crossover_solutions(solutions, scores, consistency_checks): # For each consistency check, find the solution with highest score # Extract relevant portions and combine into new solution template # Generate hybrid solutions for next generation ``` ### **Technical Specifications** **1. Data Structures** ```python @dataclass class Solution: content: str generation: int scores: Dict[str, float] # consistency_check_id -> score composite_score: float parent_solutions: List[str] @dataclass class ConsistencyCheck: id: str description: str evaluation_prompt: str ``` **2. API Integration** - **OpenRouter Configuration**: Support multiple models - **Concurrent Processing**: Evaluate solutions in parallel - **Response Parsing**: Extract scores and reasoning from LLM responses - **Fallback Mechanisms**: Handle API failures gracefully **3. Logging and Monitoring** - Track evolution progress across generations - Log all API calls and responses - Monitor score improvements and convergence - Generate evolution reports and visualizations ### **Key Features to Implement** **1. Solution Generator** ```python async def generate_solution(problem: str, context: str = "") -> Solution: # Use OpenRouter to generate theoretical solution # Apply problem-specific prompting strategies # Return structured Solution object ``` **2. Consistency Evaluator** ```python async def evaluate_solution(solution: Solution, check: ConsistencyCheck) -> float: # Send solution + consistency check to evaluator LLM # Parse numerical score from response # Handle edge cases and validation ``` **3. Evolution Controller** ```python class EvolutionController: async def run_evolution(self, problem: str, checks: List[str]) -> Solution: # Main evolution loop # Handle generation transitions # Return best final solution ``` ### **Configuration Requirements** **1. Model Configuration** ```python MODELS = { "generator": "openai/gpt-4-turbo-preview", "evaluator": "anthropic/claude-3-sonnet", "backup": "meta-llama/llama-2-70b-chat" } ``` **2. Evolution Parameters** ```python EVOLUTION_CONFIG = { "population_size": 5, "max_generations": 10, "convergence_threshold": 0.95, "mutation_rate": 0.1, "elite_preservation": 0.2 } ``` ### **Implementation Priorities** **Phase 1**: Core functionality - Basic LLM integration with OpenRouter - Simple solution generation and evaluation - Single generation testing **Phase 2**: Evolution mechanics - Multi-generation processing - Crossover and selection algorithms - Score tracking and improvement detection **Phase 3**: Advanced features - Concurrent processing optimization - Advanced crossover strategies - Comprehensive logging and reporting - Web interface for easy interaction ### **Example Usage Flow** ```python # Initialize system eventhorizon_system = EventHorizonEngine( api_key="your_openrouter_key", population_size=3, max_generations=5 ) # Define problem and checks problem = "Explain quantum entanglement in classical terms" checks = [ "Solution must maintain quantum mechanical accuracy", "Explanation must be accessible to non-physicists", "Must address the measurement problem" ] # Run evolution best_solution = await eventhorizon_system.evolve(problem, checks) print(f"Final solution (score: {best_solution.composite_score})") print(best_solution.content) ``` ### **Deliverables Expected** 1. **Main Application**: Complete Python package with CLI interface 2. **Configuration System**: Easy setup for API keys and parameters 3. **Documentation**: Setup guide and usage examples 4. **Testing Suite**: Unit tests and integration tests 5. **Example Scenarios**: Pre-configured physics and math problems **Additional Requirements:** - Use async/await for all API calls - Implement proper error handling and retries - Add progress indicators for long-running evolutions - Support saving/loading evolution states - Include visualization tools for tracking evolution progress Would you like me to clarify any specific aspects of this implementation plan or add additional technical details for particular components?

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/manasp21/EventHorizon'

If you have feedback or need assistance with the MCP directory API, please join our Discord server