Skip to main content
Glama

Azure Image Generation MCP

README.md7.78 kB
# Azure Image Generation MCP > Model Context Protocol (MCP) server for AI-powered image generation using Azure DALL-E 3 and FLUX models [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Node.js Version](https://img.shields.io/badge/node-%3E%3D18.0.0-brightgreen)](https://nodejs.org) ## 🎨 Overview A powerful MCP server that brings professional AI image generation to LibreChat. Generate stunning images using Azure's DALL-E 3 for photorealistic content or FLUX for creative artwork, with intelligent automatic model selection based on your prompts. Perfect for LibreChat users who want seamless image generation capabilities powered by Azure AI Foundry models. ## ✨ Features - **🤖 Dual Model Support** - DALL-E 3: Photorealistic images, portraits, and artistic content - FLUX (FLUX.1-Kontext-pro): Creative illustrations and flexible generation - **🧠 Intelligent Model Selection** - Automatic model selection based on prompt analysis - FLUX as default for optimal results - DALL-E 3 when explicitly requested or optimal - **📐 Multiple Image Sizes** - Square (1024x1024) - Perfect for social media - Wide (1792x1024) - Great for banners and headers - Tall (1024x1792) - Ideal for posters and vertical content - **⚙️ Customization Options** - Quality settings (standard/HD) for DALL-E 3 - Style options (vivid/natural) for DALL-E 3 - Fast generation times (typically 30-60 seconds) - **🔌 Easy Integration** - Works seamlessly with LibreChat - Compatible with MCP clients - Simple configuration via environment variables ## 📋 Prerequisites - Node.js >= 18.0.0 - Azure OpenAI API access with: - DALL-E 3 deployment (optional) - FLUX deployment (FLUX.1-Kontext-pro) - LibreChat instance (for LibreChat integration) ## 🚀 Installation ### Option 1: NPM Installation (Recommended) ```bash npm install -g azure-image-generation-mcp ``` ### Option 2: From Source ```bash git clone https://github.com/malikmalikayesha/azure-image-generation-mcp.git cd azure-image-generation-mcp npm install ``` ### Option 3: NPX (No Installation) ```bash npx azure-image-generation-mcp ``` ## ⚙️ Configuration ### 1. Environment Variables Create a `.env` file or set environment variables: ```bash AZURE_IMAGE_API_KEY=your_azure_api_key_here AZURE_IMAGE_BASE_URL=https://your-endpoint.cognitiveservices.azure.com/openai/deployments ``` ### 2. LibreChat Integration Add to your `librechat.yaml`: ```yaml mcpServers: "Image Generation": type: stdio command: node args: - /path/to/azure-image-generation-server.js name: "Image Generation" displayName: "Image Generation" timeout: 180000 # 3 minutes for generation initTimeout: 60000 # 1 minute startup chatMenu: true # Show in chat tools serverInstructions: | 🎨 AI Image Generation Tool Create stunning images using DALL-E 3 or FLUX models. Simply describe what you want to see! env: AZURE_IMAGE_API_KEY: "${AZURE_IMAGE_API_KEY}" AZURE_IMAGE_BASE_URL: "${AZURE_IMAGE_BASE_URL}" ``` ## 📖 Usage ### In LibreChat Simply ask the AI to generate an image: ``` "Generate an image of a serene mountain landscape at sunset" "Create a modern minimalist logo for a tech startup" "Draw a realistic portrait of a confident businesswoman" "Make an abstract pattern with geometric shapes" ``` ### Model Selection - **Automatic (Default)**: The system intelligently chooses between DALL-E 3 and FLUX - **FLUX (Default)**: Used for most requests unless DALL-E is explicitly mentioned - **DALL-E 3**: Explicitly request by mentioning "DALL-E" in your prompt ### Advanced Options Specify additional parameters in your request: ``` "Generate a wide landscape image in HD quality using DALL-E" Size: 1792x1024, Quality: HD, Model: DALL-E 3 "Create a tall poster with vivid colors" Size: 1024x1792, Style: vivid ``` ## 🔧 Docker Deployment (LibreChat) If using Docker with LibreChat, add to your Dockerfile: ```dockerfile # Install MCP SDK dependencies RUN npm install @modelcontextprotocol/sdk@^1.17.2 # Copy Azure image generation files COPY azure-image-generation-server.js ./ ``` Then ensure your `docker-compose.yml` includes the environment variables: ```yaml services: api: environment: - AZURE_IMAGE_API_KEY=${AZURE_IMAGE_API_KEY} - AZURE_IMAGE_BASE_URL=${AZURE_IMAGE_BASE_URL} ``` ## 🛠️ API Reference ### Tool: `generate_image` Generates an AI image based on a text prompt. #### Parameters | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | `prompt` | string | Yes | - | Description of the image to generate | | `model` | string | No | `auto` | Model selection: `dall-e-3`, `flux`, or `auto` | | `size` | string | No | `1024x1024` | Image dimensions: `1024x1024`, `1792x1024`, `1024x1792` | | `style` | string | No | `vivid` | DALL-E style: `vivid` or `natural` | | `quality` | string | No | `standard` | DALL-E quality: `standard` or `hd` | #### Response Returns a structured response with: - Text description of the generated image - Base64-encoded PNG image data - Metadata (model used, size, generation time) ## 🐛 Troubleshooting ### Common Issues **Images not displaying in Azure models:** - Ensure you're using LibreChat with the MCP image rendering fix (included in LibreChat v0.7.9+) - Check that your `librechat.yaml` configuration is correct **MCP server fails to start:** - Verify environment variables are set correctly - Check that Node.js version is >= 18.0.0 - Ensure `@modelcontextprotocol/sdk` is installed **API errors:** - Verify your Azure API key is valid - Check that the base URL points to your Azure OpenAI endpoint - Ensure your Azure deployment has DALL-E 3 or FLUX enabled **Generation timeout:** - Increase `timeout` value in `librechat.yaml` (default: 180000ms) - Check your network connectivity to Azure ### Debug Mode Enable debug logging by checking LibreChat logs: ```bash # Docker docker logs librechat-api # Local DEBUG=* npm start ``` ## 📝 Example Prompts ### Photorealistic Images ``` "A professional headshot of a software engineer in a modern office" "Sunset over Tokyo skyline with Mount Fuji in the distance" "Close-up of fresh vegetables on a wooden cutting board" ``` ### Artistic & Creative ``` "Minimalist logo design for a coffee shop called 'Bean Dreams'" "Watercolor painting of a cottage in a flower garden" "Abstract geometric pattern in blues and golds" ``` ### Marketing & Design ``` "Modern tech startup hero banner image, wide format" "Instagram post background with pastel gradients" "Professional LinkedIn banner for a data scientist" ``` ## 🤝 Contributing Contributions are welcome! Please feel free to submit a Pull Request. 1. Fork the repository 2. Create your feature branch (`git checkout -b feature/AmazingFeature`) 3. Commit your changes (`git commit -m 'Add some AmazingFeature'`) 4. Push to the branch (`git push origin feature/AmazingFeature`) 5. Open a Pull Request ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - Built for [LibreChat](https://librechat.ai) - Open-source ChatGPT alternative - Uses [Model Context Protocol (MCP)](https://modelcontextprotocol.io) by Anthropic - Powered by Azure AI Foundry models ## 📬 Support - **Issues**: [GitHub Issues](https://github.com/malikmalikayesha/azure-image-generation-mcp/issues) - **LibreChat Discord**: [Join the community](https://discord.librechat.ai) - **Documentation**: [LibreChat Docs](https://docs.librechat.ai) --- Made with ❤️ for the LibreChat community

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/malikmalikayesha/Azure-Image-Generation-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server