Skip to main content
Glama

analyze_test_cases_duplicates_semantic

Identify duplicate test cases using semantic analysis and LLM-powered clustering to optimize test suites and reduce redundancy in QA workflows.

Instructions

๐Ÿง  Advanced semantic duplicate analysis using LLM-powered step clustering and two-phase analysis

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
project_keyYesProject key (e.g., 'ANDROID', 'IOS')
suite_idNoOptional: Analyze specific test suite ID
test_case_keysNoOptional: Analyze specific test case keys instead of suite
similarity_thresholdNoTest case similarity threshold percentage (50-100, default: 80)
step_clustering_thresholdNoStep clustering threshold percentage (50-100, default: 85)
analysis_modeNoAnalysis mode: basic (fast), semantic (LLM-powered), hybrid (both)hybrid
use_step_clusteringNoEnable two-phase clustering (step clusters first, then test case clusters)
use_medoid_selectionNoUse medoid-based representative selection instead of heuristic
include_semantic_insightsNoGenerate semantic insights about workflows and patterns
formatNoOutput formatmarkdown
include_similarity_matrixNoInclude detailed similarity matrix in output
include_clickable_linksNoInclude clickable links to Zebrunner web UI (markdown format only)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/maksimsarychau/mcp-zebrunner'

If you have feedback or need assistance with the MCP directory API, please join our Discord server