Skip to main content
Glama

AI Use Cases MCP Server

AI Use Cases MCP Server

A Model Context Protocol (MCP) server for collecting, analyzing, and managing AI use case data from various information sources.

Features

🔍 Web Scraping Tools

  • URL Scraping: Extract AI use case data from specified URLs with customizable selectors

  • Information Source Management: Add, edit, and manage scraping configurations for different websites

  • Automatic Data Extraction: Extract titles, summaries, categories, and publication dates

📊 Data Analysis Tools

  • Keyword Extraction: Automatically extract relevant AI and technology keywords from content

  • Use Case Categorization: Automatically categorize AI use cases by technology and industry

  • Search & Filter: Search through collected use cases with various filters

📈 Resources

  • AI Use Cases Data: Access structured AI use case data by category and limit

  • Statistics: Get overview statistics of collected data including categories and industries

🤖 Prompts

  • Summarize Use Cases: Create concise summaries of AI use cases

  • Suggest Sources: Get recommendations for new information sources

  • Analyze Trends: Analyze trends in AI use cases over time

Installation

# Clone the repository git clone <repository-url> cd ai-use-cases-mcp-server # Install dependencies npm install # Build the project npm run build # Start the server npm start

Usage

As an MCP Server

The server can be used with any MCP-compatible client (Claude Desktop, Cursor, etc.) by adding it to your MCP configuration:

{ "mcpServers": { "ai-use-cases": { "command": "node", "args": ["dist/index.js"] } } }

Available Tools

1. Web Scraping Tool (scrape-url)

Scrape AI use case data from a specified URL.

Parameters:

  • url (string): The URL to scrape

  • selectors (object, optional): CSS selectors for data extraction

  • extractKeywords (boolean, default: true): Whether to extract keywords

Example:

{ "url": "https://example.com/ai-use-case", "selectors": { "title": "h1.title", "summary": ".content p", "category": ".category" } }

2. Add Information Source (add-source)

Add a new information source for automated data collection.

Parameters:

  • name (string): Source name

  • url (string): Source URL

  • selectors (object): CSS selectors for data extraction

3. Search Use Cases (search-use-cases)

Search through collected AI use cases with filters.

Parameters:

  • query (string): Search query

  • category (string, optional): Filter by category

  • industry (string, optional): Filter by industry

  • technology (string, optional): Filter by technology

  • limit (number, default: 20): Maximum results

4. Extract Keywords (extract-keywords)

Extract relevant keywords from text content.

Parameters:

  • text (string): Text to analyze

  • maxKeywords (number, default: 10): Maximum keywords to extract

  • category (string, optional): Category for context-specific extraction

5. Categorize Use Case (categorize-use-case)

Automatically categorize an AI use case based on its content.

Parameters:

  • title (string): Use case title

  • summary (string): Use case summary

  • content (string, optional): Additional content

Available Resources

1. AI Use Cases (ai-use-cases://{category}/{limit})

Access AI use case data by category and limit.

Parameters:

  • category (string): Category filter (optional)

  • limit (number): Maximum number of results

2. Statistics (statistics://overview)

Get overview statistics of collected data.

Available Prompts

1. Summarize Use Case (summarize-use-case)

Create a concise summary of an AI use case.

Parameters:

  • title (string): Use case title

  • content (string): Use case content

  • maxLength (number, default: 200): Maximum summary length

2. Suggest Sources (suggest-sources)

Get recommendations for new information sources.

Parameters:

  • industry (string, optional): Target industry

  • technology (string, optional): Target technology

  • category (string, optional): Target category

3. Analyze Trends (analyze-trends)

Analyze trends in AI use cases over time.

Parameters:

  • timeframe (string): Analysis timeframe

  • category (string, optional): Category filter

  • industry (string, optional): Industry filter

Data Structure

AI Use Case

interface AIUseCase { id: string; title: string; summary: string; sourceUrl: string; category: string; industry?: string; technologyKeywords: string[]; publicationDate?: string; company?: string; implementationDetails?: string; results?: string; createdAt: string; updatedAt: string; }

Scraping Configuration

interface ScrapingConfig { id: string; name: string; url: string; selectors: { title: string; summary: string; date?: string; author?: string; category?: string; }; enabled: boolean; lastScraped?: string; createdAt: string; updatedAt: string; }

Supported Categories

The system automatically categorizes AI use cases into the following categories:

  • Natural Language Processing: NLP, text analysis, chatbots, translation

  • Computer Vision: Image recognition, video analysis, object detection

  • Machine Learning: Algorithms, predictive analytics, classification

  • Robotics & Automation: Industrial automation, autonomous systems

  • Data Analytics: Business intelligence, reporting, visualization

  • Healthcare & Medical: Medical diagnosis, drug discovery, telemedicine

  • Finance & Banking: Fraud detection, risk assessment, trading

  • E-commerce & Retail: Recommendation systems, personalization

  • Transportation & Logistics: Route optimization, autonomous vehicles

  • Education & Training: Personalized learning, adaptive systems

Development

Project Structure

src/ ├── types/ # TypeScript type definitions ├── database/ # Database layer (SQLite) ├── scraping/ # Web scraping functionality ├── analysis/ # Text analysis and keyword extraction ├── mcp/ # MCP server implementation └── index.ts # Main entry point

Building

# Development npm run dev # Build for production npm run build # Run tests npm test # Lint code npm run lint # Format code npm run format

Adding New Features

  1. New Tools: Add to src/mcp/server.ts in the setupTools() method

  2. New Resources: Add to src/mcp/server.ts in the setupResources() method

  3. New Prompts: Add to src/mcp/server.ts in the setupPrompts() method

  4. New Types: Add to src/types/index.ts

Configuration

Database

The server uses SQLite for data storage. The database file (ai_use_cases.db) is created automatically in the project root.

Scraping Settings

  • Default timeout: 10 seconds

  • Retry attempts: 3

  • Delay between requests: 1 second

  • User agent: Standard browser user agent

External Dependencies

  • @modelcontextprotocol/sdk: MCP protocol implementation

  • axios: HTTP client for web scraping

  • cheerio: HTML parsing

  • puppeteer: Headless browser for JavaScript-heavy pages

  • sqlite3: Database storage

  • natural: Natural language processing for keyword extraction

  • zod: Schema validation

Security Considerations

  • The server includes DNS rebinding protection for HTTP transport

  • All user inputs are validated using Zod schemas

  • Web scraping respects robots.txt and includes delays between requests

  • No sensitive data is stored or transmitted

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests if applicable

  5. Submit a pull request

License

MIT License - see LICENSE file for details.

Support

For issues and questions:

  1. Check the documentation

  2. Search existing issues

  3. Create a new issue with detailed information


Note: This server is designed for educational and research purposes. Please respect website terms of service and robots.txt when scraping data.

Related MCP Servers

  • A
    security
    A
    license
    A
    quality
    This server implements the Model Context Protocol to facilitate meaningful interaction and understanding development between humans and AI through structured tools and progressive interaction patterns.
    Last updated -
    54
    MIT License
  • A
    security
    A
    license
    A
    quality
    A Model Context Protocol server enabling AI assistants to scrape web content with high accuracy and flexibility, supporting multiple scraping modes and content formatting options.
    Last updated -
    4
    14
    2
    MIT License
    • Linux
    • Apple
  • -
    security
    A
    license
    -
    quality
    A server that implements the Model Context Protocol, providing a standardized way to connect AI models to different data sources and tools.
    Last updated -
    0
    10
    MIT License
  • -
    security
    F
    license
    -
    quality
    A Model Context Protocol server that provides AI models with structured access to external data and services, acting as a bridge between AI assistants and applications, databases, and APIs in a standardized, secure way.
    Last updated -
    2

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/makinokeiichi/mcp-tutorial'

If you have feedback or need assistance with the MCP directory API, please join our Discord server