Skip to main content
Glama
satellite_imagery.md2.05 kB
### Satellite Imagery (Microsoft Planetary Computer via `pystac-client`) The **Satellite Imagery** tool in GIS-MCP enables downloading analysis-ready satellite scenes (e.g., Sentinel-2, Landsat) directly from the [Microsoft Planetary Computer](https://planetarycomputer.microsoft.com/). It automatically selects the least-cloudy image matching your search criteria and prepares a multi-band GeoTIFF. --- #### Installation To enable satellite imagery downloads, install GIS-MCP with the **satellite-imagery** extra: ```bash pip install gis-mcp[satellite-imagery] ``` #### Parameters - **collection** – STAC collection ID (e.g., `"sentinel-2-l2a"`, `"landsat-8-c2-l2"`) *(default: `"sentinel-2-l2a"`)* - **assets** – Bands or asset keys to download (list or comma-separated string). Common Sentinel-2 keys: - `B04` → Red - `B03` → Green - `B02` → Blue - `B08` → Near Infrared (NIR) *(default: `["B04","B03","B02"]`)* - **datetime** – Date or date range in ISO 8601. Examples: - `"2025-08-05"` → single day - `"2025-08-01/2025-08-31"` → range *(default: `"2024-01-01/2024-12-31"`) - **cloud_cover_lt** – Maximum cloud cover percentage (integer). Use `None` to disable filtering. *(default: `20`)* - **bbox** *(optional)* – Bounding box string `"minx,miny,maxx,maxy"` in WGS84 coordinates. - **geometry_geojson** *(optional)* – A GeoJSON geometry (string). If provided, the image is clipped precisely to this geometry. - **out_crs** *(optional)* – Target CRS for output (e.g., `"EPSG:4326"`). If omitted, the asset’s native CRS is preserved. - **filename** *(optional)* – Custom filename for the output GeoTIFF. *(default: auto-generated from collection, item ID, and asset keys)* - **path** *(optional)* – Output directory. *(default: `./data/satellite_imagery` inside the package)* #### Example Usage ```bash Using gis-mcp download Sentinel-2 RGB imagery for Iran during August 2025 with less than 15% cloud cover. ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mahdin75/gis-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server