Skip to main content
Glama
gm_lag.md2.22 kB
### gm_lag Run GM_Lag (spatial 2SLS / GMM-IV spatial lag model) on a cross-section. This function estimates spatial lag models using instrumental variables and generalized method of moments. - Tool: `gm_lag` Parameters - shapefile_path (string) - Path to shapefile with cross-sectional data - y_col (string) - Dependent variable column name - x_cols (string or list) - Exogenous regressor column names (no constant) - target_crs (string, default "EPSG:4326") - Target coordinate reference system - weights_method (string, default "queen") - 'queen', 'rook', or 'distance' - distance_threshold (number, default 100000) - Distance threshold in meters (auto-converted to degrees for EPSG:4326) - w_lags (integer, default 1) - Number of spatial lags for instruments (WX, WWX, ...) - lag_q (boolean, default True) - Also lag external instruments q - yend_cols (string or list, optional) - Other endogenous regressors - q_cols (string or list, optional) - External instruments for yend_cols - robust (string, optional) - None, 'white', or 'hac' for robust standard errors - hac_bandwidth (number, optional) - Bandwidth for HAC (only used if robust='hac') - spat_diag (boolean, default True) - Include AK test for spatial diagnostics - sig2n_k (boolean, default False) - Use n-k for variance if True - drop_na (boolean, default True) - Drop rows with NA in y/x/yend/q Returns - n_obs, k_vars, dependent, exog, endog, instruments, weights_method - spec: w_lags, lag_q, robust, sig2n_k - betas: Coefficient estimates - beta_names: Names of coefficients (const, x_cols, yend_cols, W_y) - std_err: Standard errors - z_stats: Z-statistics with p-values - pseudo_r2: Pseudo R-squared - pseudo_r2_reduced: Reduced form pseudo R-squared - sig2: Error variance - ssr: Sum of squared residuals - ak_test: AK test statistic and p-value (if spat_diag=True) - pred_y_head: First 5 predicted values - data_preview[], status, message Example ```json { "tool": "gm_lag", "params": { "shapefile_path": "data/regions.shp", "y_col": "GDP_GROWTH", "x_cols": ["EDUCATION", "INVESTMENT"], "target_crs": "EPSG:3857", "weights_method": "queen", "w_lags": 1, "robust": "white", "spat_diag": true } } ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mahdin75/gis-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server