Skip to main content
Glama

GIS MCP Server

README.md21.4 kB
# GIS MCP Server <div align="center"> <h3>✨ Want to perform accurate geospatial analysis in your chatbot? ✨</h3> <p><strong>Install GIS-MCP and transform your AI's spatial capabilities!</strong></p> <br/> <img src="docs/Logo.png" alt="GIS MCP Server Logo" width="300"/> <br/> <br/> </div> A Model Context Protocol (MCP) server implementation that connects Large Language Models (LLMs) to GIS operations using GIS libraries, enabling AI assistants to perform geospatial operations and transformations. 🌐 **Website:** [gis-mcp.com](https://gis-mcp.com) > Current version is 0.9.0 (Beta): > > Version 0.10.0 (Beta) is under active development. We welcome contributions and developers to join us in building this project. ## 🎥 Demo <div align="center"> <img src="docs/demo.gif" alt="GIS MCP Server Demo" width="800"/> </div> ### Rasterio Demo <div align="center"> <a href="https://www.veed.io/view/95ff85f4-efbb-4154-9a04-d966c6ae1737?panel=share"> <br/> <em>Click to watch the Rasterio demo video or go to docs folder</em> </a> </div> ## 📋 Table of Contents - [Features](#-features) - [Prerequisites](#-prerequisites) - [Installation](#-installation) - [Installing via Smithery](#-installing-via-smithery) - [pip Installation](#-pip-installation) - [Development Installation](#-development-installation) - [Available Functions](#-available-functions) - [Shapely Functions](#-shapely-functions-29-total) - [PyProj Functions](#-pyproj-functions-13-total) - [GeoPandas Functions](#-geopandas-functions-13-total) - [Rasterio Functions](#-rasterio-functions-20-total) - [PySAL Functions](#-pysal-functions-15-total) - [Visualization Functions](#-visualization-functions-2-total) - [Static Map Functions](#-static-map-functions-1-total) - [Interactive Web Map Functions](#-interactive-web-map-functions-1-total) - [Administrative Boundaries Functions](#-administrative-boundaries-functions-1-total) - [Climate Data Functions](#-climate-data-functions-1-total) - [Ecology Data Functions](#-ecology-data-functions-2-total) - [Movement Data Functions](#-movement-data-functions-2-total) - [Land Cover Data Functions](#-land-cover-data-functions-2-total) - [Satellite Imagery Functions](#-satellite-imagery-functions-1-total) - [Client Development](#-client-development) - [Planned Features](#-planned-features) - [Contributing](#-contributing) - [License](#-license) - [Related Projects](#-related-projects) - [Support](#-support) - [Badges](#-badges) ## 🚀 Features GIS MCP Server empowers AI assistants with advanced geospatial intelligence. Key features include: - 🔹 **Comprehensive Geometry Operations** – Perform intersection, union, buffer, difference, and other geometric transformations with ease. - 🔹 **Advanced Coordinate Transformations** – Effortlessly reproject and transform geometries between coordinate reference systems. - 🔹 **Accurate Measurements** – Compute distances, areas, lengths, and centroids precisely. - 🔹 **Spatial Analysis & Validation** – Validate geometries, run proximity checks, and perform spatial overlays or joins. - 🔹 **Raster & Vector Support** – Process raster layers, compute indices like NDVI, clip, resample, and merge with vector data. - 🔹 **Spatial Statistics & Modeling** – Leverage PySAL for spatial autocorrelation, clustering, and neighborhood analysis. - 🔹 **Easy Integration** – Connect seamlessly with MCP-compatible clients like Claude Desktop or Cursor IDE. - 🔹 **Flexible & Extensible** – Supports Python-based GIS libraries and is ready for custom tools or workflow extensions. > 🌟 **Tip:** With GIS MCP Server, your AI can now “think spatially,” unlocking new capabilities for environmental analysis, mapping, and location intelligence. --- ## 📋 Prerequisites - Python 3.10 or higher - MCP-compatible client (like Claude Desktop or Cursor) - Internet connection for package installation ## 🛠 Installation Choose the installation method that best suits your needs: ### 🛠 Installing via Smithery To install GIS MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@mahdin75/gis-mcp): ```bash npx -y @smithery/cli install @mahdin75/gis-mcp --client claude ``` ### 📦 pip Installation The pip installation is recommended for most users: 1. Install uv package manager: ```bash pip install uv ``` 2. Create the Virtual Environment (Python 3.10+): ```bash uv venv --python=3.10 ``` 3. Install the package: ```bash uv pip install gis-mcp ``` #### Install with Visualization Features To install with visualization capabilities (Folium and PyDeck for interactive maps): ```bash uv pip install gis-mcp[visualize] ``` This will install additional dependencies: - `folium>=0.15.0` - For creating interactive web maps - `pydeck>=0.9.0` - For advanced 3D visualizations 4. Start the server: ```bash gis-mcp ``` #### pip Configuration To use the pip installation with Claude or Cursor, add the following configuration: **Claude Desktop:** **Windows:** ```json { "mcpServers": { "gis-mcp": { "command": "C:\\Users\\YourUsername\\.venv\\Scripts\\gis-mcp", "args": [] } } } ``` **Linux/Mac:** ```json { "mcpServers": { "gis-mcp": { "command": "/home/YourUsername/.venv/bin/gis-mcp", "args": [] } } } ``` **Cursor IDE** (create `.cursor/mcp.json`): **Windows:** ```json { "mcpServers": { "gis-mcp": { "command": "C:\\Users\\YourUsername\\.venv\\Scripts\\gis-mcp", "args": [] } } } ``` **Linux/Mac:** ```json { "mcpServers": { "gis-mcp": { "command": "/home/YourUsername/.venv/bin/gis-mcp", "args": [] } } } ``` After configuration: 1. Make sure to replace `YourUsername` with your actual username 2. For development installation, replace `/path/to/gis-mcp` with the actual path to your project 3. Restart your IDE to apply the changes 4. You can now use all GIS operations through Claude or Cursor! ### 🛠 Development Installation For contributors and developers: 1. Install uv package manager: ```bash pip install uv ``` 2. Create the Virtual Environment: ```bash uv venv --python=3.10 ``` 3. Install the package in development mode: ```bash uv pip install -e . ``` 4. Start the server: ```bash python -m gis_mcp ``` #### Development Configuration To use the development installation with Claude or Cursor, add the following configuration: **Claude Desktop:** **Windows:** ```json { "mcpServers": { "gis-mcp": { "command": "C:\\path\\to\\gis-mcp\\.venv\\Scripts\\python", "args": ["-m", "gis_mcp"] } } } ``` **Linux/Mac:** ```json { "mcpServers": { "gis-mcp": { "command": "/path/to/gis-mcp/.venv/bin/python", "args": ["-m", "gis_mcp"] } } } ``` **Cursor IDE** (create `.cursor/mcp.json`): **Windows:** ```json { "mcpServers": { "gis-mcp": { "command": "C:\\path\\to\\gis-mcp\\.venv\\Scripts\\python", "args": ["-m", "gis_mcp"] } } } ``` **Linux/Mac:** ```json { "mcpServers": { "gis-mcp": { "command": "/path/to/gis-mcp/.venv/bin/python", "args": ["-m", "gis_mcp"] } } } ``` After configuration: 1. Make sure to replace `YourUsername` with your actual username 2. For development installation, replace `/path/to/gis-mcp` with the actual path to your project 3. Restart your IDE to apply the changes 4. You can now use all GIS operations through Claude or Cursor! ## 📚 Available Functions This section provides a comprehensive list of all available functions organized by library. ### 🔷 Shapely Functions (29 total) **Basic Geometric Operations:** - `buffer` - Create buffer around geometry - `intersection` - Find intersection of two geometries - `union` - Combine two geometries - `difference` - Find difference between geometries - `symmetric_difference` - Find symmetric difference **Geometric Properties:** - `convex_hull` - Calculate convex hull - `envelope` - Get bounding box - `minimum_rotated_rectangle` - Get minimum rotated rectangle - `get_centroid` - Get centroid point - `get_bounds` - Get geometry bounds - `get_coordinates` - Extract coordinate array - `get_geometry_type` - Get geometry type name **Transformations:** - `rotate_geometry` - Rotate geometry by angle - `scale_geometry` - Scale geometry by factors - `translate_geometry` - Move geometry by offset **Advanced Operations:** - `triangulate_geometry` - Create triangulation - `voronoi` - Create Voronoi diagram - `unary_union_geometries` - Union multiple geometries **Measurements:** - `get_length` - Calculate geometry length - `get_area` - Calculate geometry area **Validation & Utilities:** - `is_valid` - Check geometry validity - `make_valid` - Fix invalid geometry - `simplify` - Simplify geometry - `snap_geometry` - Snap to reference geometry - `nearest_point_on_geometry` - Find nearest point - `normalize_geometry` - Normalize orientation - `geometry_to_geojson` - Convert to GeoJSON - `geojson_to_geometry` - Convert from GeoJSON ### 🔷 PyProj Functions (13 total) **Coordinate Transformations:** - `transform_coordinates` - Transform point coordinates - `project_geometry` - Project geometry between CRS **CRS Information:** - `get_crs_info` - Get detailed CRS information - `get_available_crs` - List available CRS systems - `get_utm_zone` - Get UTM zone for coordinates - `get_utm_crs` - Get UTM CRS for coordinates - `get_geocentric_crs` - Get geocentric CRS **Geodetic Calculations:** - `get_geod_info` - Get ellipsoid information - `calculate_geodetic_distance` - Calculate distance on ellipsoid - `calculate_geodetic_point` - Calculate point at distance/azimuth - `calculate_geodetic_area` - Calculate area on ellipsoid ### 🔷 GeoPandas Functions (13 total) **I/O Operations:** - `read_file_gpd` - Read geospatial file with preview - `write_file_gpd` - Export GeoDataFrame to file **Join & Merge Operations:** - `append_gpd` - Concatenate GeoDataFrames vertically - `merge_gpd` - Database-style attribute joins - `overlay_gpd` - Spatial overlay operations - `dissolve_gpd` - Dissolve by attribute - `explode_gpd` - Split multi-part geometries **Spatial Operations:** - `clip_vector` - Clip geometries - `sjoin_gpd` - Spatial joins - `sjoin_nearest_gpd` - Nearest neighbor spatial joins - `point_in_polygon` - Point-in-polygon tests ### 🔷 Rasterio Functions (20 total) **Basic Raster Operations:** - `metadata_raster` - Get raster metadata - `get_raster_crs` - Get raster CRS - `extract_band` - Extract single band - `raster_band_statistics` - Calculate band statistics - `raster_histogram` - Compute pixel histograms **Raster Processing:** - `clip_raster_with_shapefile` - Clip raster with polygons - `resample_raster` - Resample by scale factor - `reproject_raster` - Reproject to new CRS - `tile_raster` - Split into tiles **Raster Analysis:** - `compute_ndvi` - Calculate vegetation index - `raster_algebra` - Mathematical operations on bands - `concat_bands` - Combine single-band rasters - `weighted_band_sum` - Weighted band combination **Advanced Analysis:** - `zonal_statistics` - Statistics within polygons - `reclassify_raster` - Reclassify pixel values - `focal_statistics` - Moving window statistics - `hillshade` - Generate hillshade from DEM - `write_raster` - Write array to raster file ### 🔷 PySAL Functions (15 total) **Spatial Autocorrelation:** - `morans_i` - Global Moran's I statistic - `gearys_c` - Global Geary's C statistic - `gamma_statistic` - Gamma index - `getis_ord_g` - Global Getis-Ord G statistic **Local Statistics:** - `moran_local` - Local Moran's I - `getis_ord_g_local` - Local Getis-Ord G\* - `join_counts_local` - Local join counts **Global Statistics:** - `join_counts` - Binary join counts test - `adbscan` - Adaptive density-based clustering **Spatial Weights:** - `weights_from_shapefile` - Create weights from shapefile - `distance_band_weights` - Distance-based weights - `knn_weights` - K-nearest neighbors weights - `build_transform_and_save_weights` - Build, transform, and save weights - `ols_with_spatial_diagnostics_safe` - OLS regression with spatial diagnostics - `build_and_transform_weights` - Build and transform weights ### 🔷 Visualization Functions (2 total) **Static Map Visualization (Matplotlib/GeoPandas):** - `create_map` – Generate high-quality static maps (PNG, PDF, JPG) from multiple geospatial data sources including shapefiles, rasters, WKT geometries, and coordinate arrays. Supports multiple layers with individual styling options, legends, titles, and grid overlays. **Interactive Web Map Visualization (Folium):** - `create_web_map` – Generate interactive HTML maps using Folium with layer controls, legends, scale bars, dynamic titles, tooltips, and minimap. Supports multiple basemap options and responsive design for web browsers. ### 🔷 Administrative Boundaries Functions (1 total) **Boundary Download:** - `download_boundaries` - Download GADM administrative boundaries and save as GeoJSON ### 🔷 Climate Data Functions (1 total) **Climate Data Download:** - `download_climate_data` - Download climate data (ERA5 or other CDS datasets) ### 🔷 Ecology Data Functions (2 total) **Ecology Data Download and Info:** - `get_species_info` – Retrieve taxonomic information for a given species name - `download_species_occurrences` – Download occurrence records for a given species and save as JSON ### 🔷 Movement Data Functions (2 total) **Movement Data Download and Routing (via [OSMnx](https://osmnx.readthedocs.io/en/stable/)):** - `download_street_network` – Download a street network for a given place and save as GraphML - `calculate_shortest_path` – Calculate the shortest path between two points using a saved street network ### 🔷 Land Cover Data Functions (2 total) **Land Cover from Planetary Computer:** - `download_worldcover` – Download ESA WorldCover for AOI/year; optional crop and reprojection - `compute_s2_ndvi` – Compute NDVI from Sentinel-2 L2A; crop and reprojection supported ### 🔷 Satellite Imagery Functions (1 total) **STAC-based Satellite Download:** - `download_satellite_imagery` – Download and stack bands from STAC items (e.g., Sentinel-2, Landsat), with optional crop and reprojection **Total Functions Available: 89** ## 🛠 Client Development Example usage of the tools: ### Buffer Operation ```python Tool: buffer Parameters: { "geometry": "POINT(0 0)", "distance": 10, "resolution": 16, "join_style": 1, "mitre_limit": 5.0, "single_sided": false } ``` ### Coordinate Transformation ```python Tool: transform_coordinates Parameters: { "coordinates": [0, 0], "source_crs": "EPSG:4326", "target_crs": "EPSG:3857" } ``` ### Geodetic Distance ```python Tool: calculate_geodetic_distance Parameters: { "point1": [0, 0], "point2": [10, 10], "ellps": "WGS84" } ``` ### Static Map Creation ```python Tool: create_map Parameters: { "layers": [ { "data": "buildings.shp", "style": {"label": "Buildings", "color": "red", "alpha": 0.7} }, { "data": "roads.shp", "style": {"label": "Roads", "color": "black", "linewidth": 1} } ], "filename": "city_analysis", "filetype": "png", "title": "City Infrastructure Analysis", "show_grid": true, "add_legend": true } ``` ### Interactive Web Map Creation ```python Tool: create_web_map Parameters: { "layers": [ { "data": "buildings.shp", "style": {"label": "Buildings", "color": "red"} }, { "data": "parks.geojson", "style": {"label": "Parks", "color": "green"} } ], "filename": "city_interactive.html", "title": "City Infrastructure Map", "basemap": "CartoDB positron", "show_grid": true, "add_legend": true, "add_minimap": true } ``` ## 🔮 Planned Features - Implement advanced spatial indexing - Implement network analysis capabilities - Add support for 3D geometries - Implement performance optimizations - Add support for more GIS libraries ## 🤝 Contributing We welcome contributions! Here's how you can help: 1. Fork the repository 2. Create a feature branch (`git checkout -b feature/AmazingFeature`) 3. Commit your changes (`git commit -m 'Add some AmazingFeature'`) 4. Push to the branch (`git push origin feature/AmazingFeature`) 5. Open a Pull Request Please ensure your PR description clearly describes the problem and solution. Include the relevant issue number if applicable. ## 📄 License This project is licensed under the MIT License - see the LICENSE file for details. ## 🔗 Related Projects | Project Name | Category | Description | | --------------------------------------------------------------------------------------------------- | -------------------------- | ------------------------------------------------------------------------------------------------------------- | | [Model Context Protocol](https://github.com/anthropics/model-context-protocol) | MCP Related | The core MCP implementation | | [Shapely](https://github.com/shapely/shapely) | Geospatial Analysis | Python package for manipulation and analysis of geometric objects | | [PyProj](https://github.com/pyproj4/pyproj) | Geospatial Analysis | Python interface to PROJ library | | [GeoPandas](https://github.com/geopandas/geopandas) | Geospatial Analysis | Python package for working with geospatial data | | [Rasterio](https://github.com/rasterio/rasterio) | Geospatial Analysis | Python package for reading and writing geospatial raster data | | [PySAL](https://github.com/pysal/pysal) | Geospatial Analysis | Python spatial analysis library for geospatial data science | | [cdsapi](https://github.com/ecmwf/cdsapi) | Geospatial Data Collecting | Python API to access the Copernicus Climate Data Store (CDS) | | [pygadm](https://github.com/12rambau/pygadm) | Geospatial Data Collecting | Easy access to administrative boundary defined by GADM from Python scripts | | [pygbif](https://github.com/gbif/pygbif) | Geospatial Data Collecting | Python client for the GBIF API (ecology and biodiversity data) | | [OSMnx](https://osmnx.readthedocs.io/en/stable/) | Geospatial Data Collecting | Python package for downloading, modeling, and analyzing street networks and urban features from OpenStreetMap | | [pystac-client](https://github.com/stac-utils/pystac-client) | Geospatial Data Collecting | Python client for STAC catalogs; search and access spatiotemporal assets | | [Planetary Computer SDK for Python](https://github.com/microsoft/planetary-computer-sdk-for-python) | Geospatial Data Collecting | Python SDK for Microsoft Planetary Computer; auth and helpers for STAC/COGs | ## 📞 Support For support, please open an issue in the GitHub repository. ## 💬 Community Join our Discord community for discussions, updates, and support: [![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20community-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/dzkXZsZK) ## 👥 Contributors <a href="https://github.com/mahdin75/gis-mcp/graphs/contributors"> <img src="https://contrib.rocks/image?repo=mahdin75/gis-mcp" /> </a> Made with [contrib.rocks](https://contrib.rocks). <br/> ## 🏆 Badges <div align="center"> [![Trust Score](https://archestra.ai/mcp-catalog/api/badge/quality/mahdin75/gis-mcp)](https://archestra.ai/mcp-catalog/mahdin75__gis-mcp) <br/></br> <a href="https://glama.ai/mcp/servers/@mahdin75/gis-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@mahdin75/gis-mcp/badge" alt="GIS Server MCP server" /> </a> <br/><br/><br/> <a href="https://mcp.so/server/gis-mcp-server/mahdin75"> <img src="https://mcp.so/logo.png" alt="MCP.so Badge" width="150"/> </a> </div>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mahdin75/gis-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server