Skip to main content
Glama

Arca MCP

A Model Context Protocol (MCP) server providing semantic memory storage and retrieval via vector embeddings. Built with FastAPI + FastMCP, using LanceDB for vector storage and Google Gemini for embedding generation.

Features

  • Semantic Search — Store and retrieve memories using natural language queries powered by vector similarity search

  • Dual Access — MCP tools for AI agents + REST API for programmatic integrations

  • Multi-Tenant Isolation — Namespace-scoped operations via X-Namespace HTTP header

  • Bucket Organization — Group memories into logical buckets for structured storage

  • Embedding Caching — Redis-backed cache for generated embeddings to minimize API calls

  • Bearer Token Auth — Constant-time token verification for secure access

Prerequisites

  • Python 3.14+

  • UV package manager

  • Redis

  • Google API key (for Gemini embeddings)

Quick Start

# Clone the repository git clone https://github.com/your-org/arca-mcp.git cd arca-mcp # Install dependencies uv sync --locked # Configure environment cp .env.example .env # Edit .env with your ARCA_GOOGLE_API_KEY and ARCA_APP_AUTH_KEY # Run the server python -m app

The server starts on http://0.0.0.0:4201 by default, with MCP available at /app/mcp and REST API at /v1.

Configuration

All settings are configured via environment variables with the ARCA_ prefix, or through a .env file.

Variable

Type

Default

Description

ARCA_APP_HOST

str

0.0.0.0

Server bind address

ARCA_APP_PORT

int

4201

Server port

ARCA_APP_WORKERS

int

1

Uvicorn worker count

ARCA_APP_AUTH_KEY

str

required

Bearer token for MCP authentication

ARCA_TRANSPORT

str

streamable-http

MCP transport (stdio, http, sse, streamable-http)

ARCA_DEBUG

bool

false

Enable debug mode

ARCA_LOG_MESSAGE_MAX_LEN

int

2000

Maximum log message length

ARCA_GOOGLE_API_KEY

str

required

Google API key for Gemini embeddings

ARCA_EMBEDDING_MODEL

str

gemini-embedding-001

Gemini embedding model name

ARCA_EMBEDDING_DIMENSION

int

3072

Embedding vector dimensionality

ARCA_VECTOR_STORE_PATH

str

./lancedb

LanceDB storage directory

ARCA_REDIS_HOST

str

localhost

Redis host

ARCA_REDIS_PORT

int

6379

Redis port

ARCA_REDIS_DB_CACHE

int

4

Redis database number for cache

ARCA_REDIS_PASSWORD

str

null

Redis password (optional)

ARCA_CACHE_TTL

int

3600

Default cache TTL in seconds (1 hour)

ARCA_CACHE_TTL_LONG

int

604800

Long cache TTL in seconds (7 days, used for embeddings)

MCP Tools

All tools are mounted under the memory namespace. Operations are scoped to the namespace provided via the X-namespace HTTP header (defaults to "default").

memory_add

Store content in memory with a vector embedding.

Parameter

Type

Required

Description

content

str

yes

Content to store

bucket

str | null

no

Bucket name (defaults to "default")

Returns: { "status": "Memory added", "memory_id": "<uuid>" }

memory_get

Retrieve memories via semantic similarity search.

Parameter

Type

Required

Description

query

str

yes

Natural language search query

bucket

str | null

no

Filter by bucket

top_k

int

no

Number of results (default: 5)

Returns: { "status": "Memory retrieved", "results": [...] }

memory_delete

Delete a specific memory by its UUID.

Parameter

Type

Required

Description

memory_id

str

yes

UUID of the memory to delete

Returns: { "status": "Memory deleted" }

memory_clear

Clear all memories in a bucket.

Parameter

Type

Required

Description

bucket

str | null

no

Bucket to clear (defaults to "default")

Returns: { "status": "Memories cleared" }

memory_list_buckets

List all buckets in the current namespace.

Parameters: None

Returns: { "buckets": ["default", "work", ...] }

REST API

All REST endpoints are under /v1, require a Authorization: Bearer <token> header, and accept an optional X-Namespace header (defaults to "default").

Interactive API docs are available at /docs when the server is running.

Method

Path

Description

POST

/v1/memories

Add a memory

POST

/v1/memories/search

Semantic similarity search

DELETE

/v1/memories/{memory_id}

Delete a specific memory

DELETE

/v1/memories?bucket=...

Clear memories in a bucket

GET

/v1/buckets

List all buckets

Examples

All examples assume the server is running at localhost:4201. Replace $TOKEN with your ARCA_APP_AUTH_KEY.

Add a memory

curl -X POST http://localhost:4201/v1/memories \ -H "Authorization: Bearer $TOKEN" \ -H "X-Namespace: my_project" \ -H "Content-Type: application/json" \ -d '{"content": "User prefers dark mode", "bucket": "preferences"}'
{ "status": "Memory added", "memory_id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890" }

Search memories

curl -X POST http://localhost:4201/v1/memories/search \ -H "Authorization: Bearer $TOKEN" \ -H "X-Namespace: my_project" \ -H "Content-Type: application/json" \ -d '{"query": "what theme does the user like?", "top_k": 3}'
{ "status": "Memory retrieved", "results": [ { "memory_id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890", "content": "User prefers dark mode", "bucket": "preferences" } ] }

Delete a memory

curl -X DELETE http://localhost:4201/v1/memories/a1b2c3d4-e5f6-7890-abcd-ef1234567890 \ -H "Authorization: Bearer $TOKEN" \ -H "X-Namespace: my_project"
{ "status": "Memory deleted" }

Clear a bucket

curl -X DELETE "http://localhost:4201/v1/memories?bucket=preferences" \ -H "Authorization: Bearer $TOKEN" \ -H "X-Namespace: my_project"
{ "status": "Memories cleared" }

List buckets

curl http://localhost:4201/v1/buckets \ -H "Authorization: Bearer $TOKEN" \ -H "X-Namespace: my_project"
{ "buckets": ["default", "preferences", "work"] }

Other Endpoints

Method

Path

Description

GET

/

Index — returns { "message": "OK" }

GET

/health

Health check — returns status, version, uptime, exec ID

GET

/docs

Interactive OpenAPI documentation

*

/app/mcp

MCP streamable-http endpoint

Docker

# Build docker build -t arca-mcp . # Run docker run -p 4201:4201 \ -e ARCA_APP_AUTH_KEY=your-secret-key \ -e ARCA_GOOGLE_API_KEY=your-google-api-key \ -e ARCA_REDIS_HOST=host.docker.internal \ arca-mcp

The Docker image uses Python 3.14 slim with UV for dependency management.

MCP Client Configuration

Example .mcp.json for connecting an MCP client (e.g., Claude Code):

{ "mcpServers": { "arca_memory": { "type": "http", "url": "http://localhost:4201/app/mcp", "headers": { "Authorization": "Bearer <your-auth-key>", "X-namespace": "my_namespace" } } } }

Architecture

┌─ /app/mcp → FastMCP Auth → MCP Tool Handler ─┐ Request → FastAPI ├→ Gemini Embedding (Redis cache) → LanceDB └─ /v1/* → Bearer Auth → REST Router ───────┘ ↑ X-Namespace header (multi-tenancy)

Module Layout

app/ ├── __main__.py # Uvicorn entry point ├── main.py # FastAPI app, lifespan, MCP mount, REST router ├── api/ │ ├── deps.py # Shared dependencies (auth, namespace extraction) │ └── memory.py # REST API router for memory operations ├── context/ │ └── memory.py # MCP tool definitions (add, get, delete, clear, list_buckets) ├── core/ │ ├── config.py # Pydantic BaseSettings with ARCA_ env prefix │ ├── db.py # LanceDB async connection management │ ├── cache.py # Redis cache wrapper │ ├── ai.py # Google Gemini AI client │ └── log.py # Loguru logging configuration ├── schema/ │ ├── memory.py # REST API request/response models │ └── status.py # Response models (HealthCheckResponse, IndexResponse) └── util/ ├── embeds.py # Embedding generation with Redis caching └── memory.py # Core memory CRUD against LanceDB (PyArrow schema)

Tech Stack

  • FastAPI — ASGI web framework

  • FastMCP — Model Context Protocol server framework

  • LanceDB — Serverless vector database

  • Google Gemini — Embedding generation (gemini-embedding-001)

  • Redis — Embedding cache layer

  • Pydantic — Settings and data validation

  • UV — Python package manager

  • Loguru — Logging

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/m0nochr0me/arca-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server