Skip to main content
Glama

ThinkDrop Vision Service

by lukaizhi5559

Vision Service - MCP

Vision capabilities for ThinkDrop AI: screen capture, OCR, and VLM scene understanding.

Features

  • Screenshot Capture - Fast cross-platform screen capture

  • OCR - Text extraction using PaddleOCR (local, multilingual)

  • VLM - Scene understanding using MiniCPM-V 2.6 (lazy-loaded, optional)

  • Watch Mode - Continuous monitoring with change detection

  • Memory Integration - Auto-store to user-memory service as embeddings

Quick Start

# 1. Copy environment config cp .env.example .env # 2. Edit .env (set API keys, configure VLM, etc.) nano .env # 3. Start service ./start.sh

Service will be available at http://localhost:3006

Installation Options

Minimal (OCR Only - No GPU Required)

pip install -r requirements.txt
  • Screenshot + OCR only

  • ~200-500ms per capture

  • No VLM dependencies

Full (OCR + VLM - GPU Recommended)

# Uncomment VLM dependencies in requirements.txt pip install torch transformers accelerate # Or with CUDA support pip install torch --index-url https://download.pytorch.org/whl/cu118 pip install transformers accelerate
  • Screenshot + OCR + VLM

  • 600-1500ms with GPU, 2-6s with CPU

  • ~2.4GB model download on first use

API Endpoints

Health Check

GET /health

Capture Screenshot

POST /vision/capture { "region": [x, y, width, height], # Optional "format": "png" }

Extract Text (OCR)

POST /vision/ocr { "region": [x, y, width, height], # Optional "language": "en" # Optional }

Describe Screen (VLM)

POST /vision/describe { "region": [x, y, width, height], # Optional "task": "Find the Save button", # Optional focus "include_ocr": true, # Include OCR text "store_to_memory": true # Auto-store to user-memory }

Start Watch Mode

POST /vision/watch/start { "interval_ms": 2000, "change_threshold": 0.08, "run_ocr": true, "run_vlm": false, "task": "Monitor for errors" }

Stop Watch Mode

POST /vision/watch/stop

Watch Status

GET /vision/watch/status

Configuration

Key environment variables in .env:

# Service PORT=3006 API_KEY=your-vision-api-key-here # OCR OCR_ENGINE=paddleocr OCR_LANGUAGE=en # VLM (lazy-loaded) VLM_ENABLED=true VLM_MODEL=openbmb/MiniCPM-V-2_6 VLM_DEVICE=auto # auto, cpu, cuda # Watch WATCH_DEFAULT_INTERVAL_MS=2000 WATCH_CHANGE_THRESHOLD=0.08 # User Memory Integration USER_MEMORY_SERVICE_URL=http://localhost:3003 USER_MEMORY_API_KEY=your-user-memory-api-key

Performance

OCR Only (Minimal Setup)

  • Capture: 10-20ms

  • OCR: 200-500ms

  • Total: ~300-600ms per request

  • Memory: ~500MB

OCR + VLM (Full Setup)

  • Capture: 10-20ms

  • OCR: 200-500ms

  • VLM (GPU): 300-800ms

  • VLM (CPU): 2-5s

  • Total (GPU): ~600-1500ms

  • Total (CPU): ~2.5-6s

  • Memory: ~3-4GB (model loaded)

Watch Mode Strategy

Watch mode uses smart change detection to minimize VLM calls:

  1. Every interval: Capture + fingerprint comparison

  2. On change: Run OCR (if enabled)

  3. On significant change: Run VLM (if enabled)

  4. Auto-store: Send to user-memory service as embedding

This keeps VLM usage efficient while maintaining continuous awareness.

Integration with ThinkDrop AI

The vision service integrates with the MCP state graph:

// In AgentOrchestrator state graph const visionResult = await mcpClient.callService('vision', 'describe', { include_ocr: true, store_to_memory: true, task: userMessage }); // Result automatically stored as embedding in user-memory // No screenshot files to manage!

Testing

Test Capture

curl -X POST http://localhost:3006/vision/capture \ -H "Content-Type: application/json" \ -d '{}'

Test OCR

curl -X POST http://localhost:3006/vision/ocr \ -H "Content-Type: application/json" \ -d '{}'

Test VLM (if enabled)

curl -X POST http://localhost:3006/vision/describe \ -H "Content-Type: application/json" \ -d '{"include_ocr": true, "store_to_memory": false}'

Test Watch

# Start curl -X POST http://localhost:3006/vision/watch/start \ -H "Content-Type: application/json" \ -d '{"interval_ms": 2000, "run_ocr": true}' # Status curl http://localhost:3006/vision/watch/status # Stop curl -X POST http://localhost:3006/vision/watch/stop

Troubleshooting

OCR Not Working

  • Check PaddleOCR installation: pip list | grep paddleocr

  • Models download on first use (~100MB)

  • Check logs for download progress

VLM Not Loading

  • Ensure dependencies installed: pip list | grep transformers

  • Check available memory (need 4-8GB)

  • Set VLM_ENABLED=false to disable

  • Model downloads on first use (~2.4GB)

Performance Issues

  • CPU too slow: Disable VLM, use OCR only

  • Memory issues: Reduce watch interval, disable VLM

  • GPU not detected: Check CUDA installation

Architecture

vision-service/ ├── server.py # FastAPI app ├── src/ │ ├── services/ │ │ ├── screenshot.py # mss wrapper │ │ ├── ocr_engine.py # PaddleOCR wrapper │ │ ├── vlm_engine.py # VLM wrapper (lazy) │ │ └── watch_manager.py # Watch loop │ ├── routes/ │ │ ├── capture.py # /vision/capture │ │ ├── ocr.py # /vision/ocr │ │ ├── describe.py # /vision/describe │ │ └── watch.py # /vision/watch/* │ └── middleware/ │ └── validation.py # API key validation ├── requirements.txt ├── start.sh └── README.md

License

Part of ThinkDrop AI project.

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Provides screen capture, OCR text extraction, and visual language model scene understanding capabilities with continuous monitoring and automatic memory storage integration.

  1. Features
    1. Quick Start
      1. Installation Options
        1. Minimal (OCR Only - No GPU Required)
        2. Full (OCR + VLM - GPU Recommended)
      2. API Endpoints
        1. Health Check
        2. Capture Screenshot
        3. Extract Text (OCR)
        4. Describe Screen (VLM)
        5. Start Watch Mode
        6. Stop Watch Mode
        7. Watch Status
      3. Configuration
        1. Performance
          1. OCR Only (Minimal Setup)
          2. OCR + VLM (Full Setup)
        2. Watch Mode Strategy
          1. Integration with ThinkDrop AI
            1. Testing
              1. Test Capture
              2. Test OCR
              3. Test VLM (if enabled)
              4. Test Watch
            2. Troubleshooting
              1. OCR Not Working
              2. VLM Not Loading
              3. Performance Issues
            3. Architecture
              1. License

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/lukaizhi5559/thinkdrop-vision-service'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server