Skip to main content
Glama
get-task-rules.mjs1.67 kB
import { readFileSync } from 'fs'; import { fileURLToPath } from 'url'; import { dirname, join } from 'path'; import { getTasksResultOutputDir } from '../config.mjs'; const __filename = fileURLToPath(import.meta.url); const __dirname = dirname(__filename); /** * 获取任务管理规则 Prompt * 从 task-manager-rule.md 文件加载完整的任务管理规则 * 支持选择特定章节,任务结果输出目录从配置文件中自动获取 */ export function registerGetTaskRulesPrompt(server) { server.addPrompt({ name: 'get-task-rules', description: '获取任务管理系统的执行规则和指导原则,输出完整的任务管理规则文档', arguments: [], async load() { try { // 读取任务管理规则文件 const rulesFilePath = join(__dirname, 'task-manager-rule.md'); let rulesContent = readFileSync(rulesFilePath, 'utf8'); // 从配置文件中获取任务结果输出目录并替换占位符 try { const tasksResultOutputDir = getTasksResultOutputDir(); rulesContent = rulesContent.replace( /\{\{\{tasksResultOutputDir\}\}\}/g, tasksResultOutputDir ); } catch (configError) { // 如果配置获取失败,保留占位符并添加错误提示 rulesContent = rulesContent.replace( /\{\{\{tasksResultOutputDir\}\}\}/g, 'src/task-results' ); } return rulesContent; } catch (error) { return `获取任务管理规则时发生错误: ${error.message}`; } }, }); } export default { registerGetTaskRulesPrompt, };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/localSummer/task-manager-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server