Skip to main content
Glama
liuguoping1024

SWLC MCP Server

predict_lottery

Generate predicted lottery numbers for various games using historical data analysis and customizable strategies.

Instructions

预测彩票号码,基于历史数据生成预测结果

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
lottery_typeYes彩票类型
methodNo预测方法rule
countNo预测组数
strategyNo预测策略all

Implementation Reference

  • Registration of the 'predict_lottery' MCP tool including input schema definition
    name="predict_lottery", description="预测彩票号码,基于历史数据生成预测结果", inputSchema={ "type": "object", "properties": { "lottery_type": { "type": "string", "enum": ["双色球", "福彩3D", "七乐彩", "快乐8"], "description": "彩票类型" }, "method": { "type": "string", "enum": ["rule"], "default": "rule", "description": "预测方法" }, "count": { "type": "integer", "minimum": 1, "maximum": 20, "default": 5, "description": "预测组数" }, "strategy": { "type": "string", "enum": ["all", "balanced", "cold_recovery", "hot_focus", "interval_balance", "contrarian"], "default": "all", "description": "预测策略" } }, "required": ["lottery_type"] } ),
  • Main MCP tool handler for 'predict_lottery': fetches historical data from database/service, converts to dicts, calls PredictionManager.predict(), formats results as text.
    elif name == "predict_lottery": lottery_type = arguments.get("lottery_type") method = arguments.get("method", "rule") count = arguments.get("count", 5) strategy = arguments.get("strategy", "all") try: # 获取历史数据用于预测 historical_data = await lottery_service.get_historical_data(lottery_type, 120) if not historical_data: return [types.TextContent(type="text", text=f"获取{lottery_type}历史数据失败,无法进行预测")] # 转换为字典格式 history_dict = [{ 'period': r.period, 'numbers': r.numbers, 'special_numbers': r.special_numbers, 'draw_date': r.draw_date } for r in historical_data] # 执行预测 predictions = await lottery_service.prediction_manager.predict( lottery_type, history_dict, method=method, count=count, strategy=strategy ) if predictions: text_lines = [f"{lottery_type}预测结果(方法:{method},策略:{strategy}):\n"] for i, pred in enumerate(predictions, 1): if pred.special_numbers: numbers_str = f"{' '.join(pred.numbers)} + {' '.join(pred.special_numbers)}" else: numbers_str = ' '.join(pred.numbers) text_lines.append(f"预测 {i}: {numbers_str} (置信度: {pred.confidence:.2%})") return [types.TextContent(type="text", text="\n".join(text_lines))] else: return [types.TextContent(type="text", text=f"{lottery_type}预测失败")] except Exception as e: logger.error(f"预测失败: {e}") return [types.TextContent(type="text", text=f"预测失败:{str(e)}")]
  • Core prediction logic in RuleBasedPredictor class implementing rule-based strategies (balanced, cold recovery, hot focus, etc.) based on historical frequency analysis for generating lottery predictions.
    class RuleBasedPredictor: """基于规则的预测算法""" def predict(self, lottery_type: str, historical_data: List[Dict], count: int = 5, strategy: Optional[str] = None) -> List[PredictionResult]: """基于历史数据的规则预测,支持策略""" if lottery_type not in {"ssq", "3d", "qlc", "kl8", "双色球", "福彩3D", "七乐彩", "快乐8"}: raise ValueError(f"不支持的彩票类型: {lottery_type}") # 仅实现双色球策略,其它类型先回退到简单规则 if lottery_type in ("ssq", "双色球"): return self._predict_ssq_with_strategies(historical_data, strategy, count) # 非双色球回退:简单随机+频率权重 return self._predict_fallback(historical_data, count) def _predict_ssq_with_strategies(self, historical_data: List[Dict], strategy: Optional[str], count: int) -> List[PredictionResult]: # 计算频次 freq: Dict[str, int] = {} blue_freq: Dict[str, int] = {} for d in historical_data: for n in d.get('numbers', []): freq[n] = freq.get(n, 0) + 1 for n in (d.get('special_numbers') or []): blue_freq[n] = blue_freq.get(n, 0) + 1 # 归一化全集 all_red = [f"{i:02d}" for i in range(1, 34)] for n in all_red: freq.setdefault(n, 0) all_blue = [f"{i:02d}" for i in range(1, 17)] for n in all_blue: blue_freq.setdefault(n, 0) hot = sorted(freq.items(), key=lambda x: (-x[1], int(x[0]))) cold = sorted(freq.items(), key=lambda x: (x[1], int(x[0]))) medium = [k for k, v in sorted(freq.items(), key=lambda x: (abs(x[1] - (sum(freq.values())/len(freq) if freq else 0)), int(x[0])))] blue_sorted = sorted(blue_freq.items(), key=lambda x: (-x[1], int(x[0]))) def pick_distinct(candidates: List[str], k: int, exclude: Optional[set] = None) -> List[str]: res = [] seen = set(exclude or set()) for n in candidates: if n in seen: continue res.append(n) seen.add(n) if len(res) >= k: break # 不足则随机补齐 if len(res) < k: pool = [x for x in all_red if x not in seen] random.shuffle(pool) res.extend(pool[:(k - len(res))]) return sorted(res, key=lambda x: int(x)) def blue_pick(top_k: int = 4) -> str: pool = [b for b, _ in blue_sorted[:top_k]] or all_blue return random.choice(pool) strategies = { 'balanced': '热冷均衡型', 'cold_recovery': '冷门回补型', 'hot_focus': '热门集中型', 'interval_balance': '区间平衡型', 'contrarian': '反向思维型' } results: List[PredictionResult] = [] to_run: List[str] if strategy in (None, '', 'all'): to_run = ['balanced', 'cold_recovery', 'hot_focus', 'interval_balance', 'contrarian'] else: to_run = [strategy] for strat in to_run: if strat == 'balanced': red = pick_distinct([k for k, _ in hot] + [k for k, _ in cold], 6) elif strat == 'cold_recovery': red = pick_distinct([k for k, _ in cold] + medium + [k for k, _ in hot], 6) elif strat == 'hot_focus': red = pick_distinct([k for k, _ in hot] + medium, 6) elif strat == 'interval_balance': # 每区间各取2个:1-11,12-22,23-33,优先中频次 seg1 = [n for n in medium if 1 <= int(n) <= 11] + [k for k, _ in hot if 1 <= int(k) <= 11] seg2 = [n for n in medium if 12 <= int(n) <= 22] + [k for k, _ in hot if 12 <= int(k) <= 22] seg3 = [n for n in medium if 23 <= int(n) <= 33] + [k for k, _ in hot if 23 <= int(k) <= 33] r1 = pick_distinct(seg1, 2) r2 = pick_distinct(seg2, 2, exclude=set(r1)) r3 = pick_distinct(seg3, 2, exclude=set(r1 + r2)) red = sorted(list(set(r1 + r2 + r3)), key=lambda x: int(x)) elif strat == 'contrarian': # 避开最热与连号,偏向冷门与分散 base = [k for k, _ in cold] + medium cand = [] for n in base: if cand and int(n) == int(cand[-1]) + 1: continue cand.append(n) red = pick_distinct(cand, 6) else: red = pick_distinct([k for k, _ in hot] + [k for k, _ in cold], 6) blue = blue_pick() results.append(PredictionResult( numbers=red, special_numbers=[blue], confidence=0.0, method=strategies.get(strat, strat), timestamp=datetime.now().isoformat(), metadata={"strategy": strat} )) # 若用户只选单一策略且需要多组,生成该策略的多个变体 if strategy not in (None, '', 'all') and len(results) < count: extra_needed = count - len(results) for i in range(extra_needed): # 为同一策略生成不同的变体,增加随机性 if strategy == 'balanced': # 热冷均衡型:调整热门和冷门的比例 hot_ratio = 0.3 + (i * 0.1) # 0.3, 0.4, 0.5, 0.6, 0.7 hot_count = max(1, min(5, int(6 * hot_ratio))) cold_count = 6 - hot_count red = pick_distinct([k for k, _ in hot][:hot_count*2] + [k for k, _ in cold][:cold_count*2], 6) elif strategy == 'cold_recovery': # 冷门回补型:调整冷门比例 cold_ratio = 0.4 + (i * 0.1) # 0.4, 0.5, 0.6, 0.7, 0.8 cold_count = max(2, min(5, int(6 * cold_ratio))) hot_count = 6 - cold_count red = pick_distinct([k for k, _ in cold][:cold_count*2] + [k for k, _ in hot][:hot_count*2], 6) elif strategy == 'hot_focus': # 热门集中型:调整热门比例 hot_ratio = 0.5 + (i * 0.1) # 0.5, 0.6, 0.7, 0.8, 0.9 hot_count = max(3, min(6, int(6 * hot_ratio))) cold_count = 6 - hot_count red = pick_distinct([k for k, _ in hot][:hot_count*2] + [k for k, _ in cold][:cold_count*2], 6) elif strategy == 'interval_balance': # 区间平衡型:调整各区间的数量 seg1_count = 2 + (i % 2) # 2或3 seg2_count = 2 + ((i + 1) % 2) # 2或3 seg3_count = 6 - seg1_count - seg2_count seg1 = [n for n in medium if 1 <= int(n) <= 11] + [k for k, _ in hot if 1 <= int(k) <= 11] seg2 = [n for n in medium if 12 <= int(n) <= 22] + [k for k, _ in hot if 12 <= int(k) <= 22] seg3 = [n for n in medium if 23 <= int(n) <= 33] + [k for k, _ in hot if 23 <= int(k) <= 33] r1 = pick_distinct(seg1, seg1_count) r2 = pick_distinct(seg2, seg2_count, exclude=set(r1)) r3 = pick_distinct(seg3, seg3_count, exclude=set(r1 + r2)) red = sorted(list(set(r1 + r2 + r3)), key=lambda x: int(x)) elif strategy == 'contrarian': # 反向思维型:调整避开热门的程度 avoid_hot_ratio = 0.3 + (i * 0.1) # 0.3, 0.4, 0.5, 0.6, 0.7 avoid_count = int(len(hot) * avoid_hot_ratio) avoid_set = set([k for k, _ in hot[:avoid_count]]) base = [k for k, _ in cold if k not in avoid_set] + [k for k, _ in medium if k not in avoid_set] red = pick_distinct(base, 6) else: # 默认策略的变体 jitter = [k for k, _ in hot][:10] + [k for k, _ in cold][:10] random.shuffle(jitter) red = pick_distinct(jitter, 6) blue = blue_pick() results.append(PredictionResult( numbers=red, special_numbers=[blue], confidence=0.0, method=strategies.get(strategy, strategy), timestamp=datetime.now().isoformat(), metadata={"strategy": strategy, "variant": i + 1} )) return results def _predict_fallback(self, historical_data: List[Dict], count: int) -> List[PredictionResult]: results: List[PredictionResult] = [] for _ in range(count): numbers = sorted(random.sample(range(1, 34), 6)) blue = random.randint(1, 16) results.append(PredictionResult( numbers=[f"{n:02d}" for n in numbers], special_numbers=[f"{blue:02d}"], confidence=0.0, method='rule', timestamp=datetime.now().isoformat(), metadata={"fallback": True} )) return results
  • PredictionManager wrapper that initializes and calls RuleBasedPredictor.predict(), used by the tool handler.
    class PredictionManager: """预测管理器""" def __init__(self): self.rule_predictor = RuleBasedPredictor() async def predict(self, lottery_type: str, historical_data: List[Dict], method: str = 'rule', count: int = 5, strategy: Optional[str] = None) -> List[PredictionResult]: """执行预测""" try: # 目前仅实现规则+策略 return self.rule_predictor.predict(lottery_type, historical_data, count=count, strategy=strategy) except Exception as e: logger.error(f"预测失败: {e}") return self.rule_predictor.predict(lottery_type, historical_data, count=count, strategy=strategy)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/liuguoping1024/swlc-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server