Skip to main content
Glama
liqcui

OpenShift OVN-Kubernetes Benchmark MCP Server

by liqcui
README.mdβ€’10 kB
# OpenShift OVN-Kubernetes Benchmark MCP Server A comprehensive benchmarking and performance monitoring solution for OpenShift clusters using OVN-Kubernetes networking, built with FastMCP and AI-powered analysis. ## Architecture Overview ## Topology <img width="859" height="572" alt="ovnk-benchmark-mcp-architecture-topology" src="https://github.com/user-attachments/assets/f741b136-40d2-4a60-ba02-ca660c3abbaa" /> ## Web UI <img width="1726" height="951" alt="ovnk-benchmark-mcp-web-ui" src="https://github.com/user-attachments/assets/54aab83b-f65e-458d-aa3e-ea59d023cd62" /> ## Features ### πŸ”§ Core Capabilities - **Automated Authentication**: Discovers and authenticates with OpenShift/Kubernetes clusters - **Multi-Source Monitoring**: Collects metrics from Prometheus, Kubernetes API, and cluster resources - **AI-Powered Analysis**: Uses LangGraph and OpenAI for intelligent insights and recommendations - **Comprehensive Reporting**: Generates Excel and PDF reports with visualizations - **Historical Tracking**: Stores performance data in DuckDB for trend analysis ### πŸ“Š Monitored Components - **Kubernetes API Server**: Request latency, throughput, and error rates - **Multus CNI**: Resource usage and pod networking performance - **OVN-Kubernetes Pods**: Control plane and node performance - **OVN Containers**: Database sizes, memory usage, and sync performance - **OVS Components**: CPU and memory usage of OVS processes - **General Cluster Info**: NetworkPolicies, AdminNetworkPolicies, EgressFirewalls ### πŸ€– AI Features - Automated performance trend analysis - Intelligent alert correlation - Proactive recommendations - Risk assessment and health scoring - Natural language insights ## Quick Start ### Prerequisites - Python 3.9+ - OpenShift/Kubernetes cluster access - KUBECONFIG file - OpenAI API key (for AI features) ### Installation 1. **Clone and Setup** ```bash git clone <repository> cd ocp-benchmark-mcp chmod +x ovnk_benchmark_mcp_command.sh ./ovnk_benchmark_mcp_command.sh setup ``` 2. **Test Configuration** ```bash ./ovnk_benchmark_mcp_command.sh -k ~/.kube/config test ``` ### Usage #### Start MCP Server ```bash # Start server (runs on port 8000) ./ovnk_benchmark_mcp_command.sh -k ~/.kube/config server ``` #### Collect Performance Data ```bash # Collect data for 10 minutes ./ovnk_benchmark_mcp_command.sh -k ~/.kube/config -d 10m collect ``` #### Generate Reports ```bash # Generate report for last 7 days ./ovnk_benchmark_mcp_command.sh -o sk-your-openai-key -p 7 report ``` #### Full Workflow ```bash # Collect data and generate report ./ovnk_benchmark_mcp_command.sh -k ~/.kube/config -o sk-your-openai-key full ``` ## Project Structure ``` ocp-benchmark-mcp/ β”œβ”€β”€ README.md # This file β”œβ”€β”€ pyproject.toml # Python project configuration β”œβ”€β”€ ovnk_benchmark_mcp_server.py # Main MCP server β”œβ”€β”€ ovnk_benchmark_mcp_agent_perfdata.py # Data collection agent β”œβ”€β”€ ovnk_benchmark_mcp_agent_report.py # Report generation agent β”œβ”€β”€ ovnk_benchmark_mcp_command.sh # Startup script β”œβ”€β”€ ocauth/ β”‚ └── ovnk_benchmark_auth.py # OpenShift authentication β”œβ”€β”€ tools/ β”‚ β”œβ”€β”€ ovnk_benchmark_openshift_generalinfo.py # Cluster general info β”‚ β”œβ”€β”€ ovnk_benchmark_prometheus_basequery.py # Base Prometheus queries β”‚ β”œβ”€β”€ ovnk_benchmark_prometheus_kubeapi.py # API server metrics β”‚ β”œβ”€β”€ ovnk_benchmark_prometheus_multus.py # Multus CNI metrics β”‚ β”œβ”€β”€ ovnk_benchmark_prometheus_ovnk_pods.py # OVN-K pod metrics β”‚ β”œβ”€β”€ ovnk_benchmark_prometheus_ovnk_containers.py # OVN container metrics β”‚ └── ovnk_benchmark_prometheus_ovnk_sync.py # OVN sync metrics β”œβ”€β”€ config/ β”‚ β”œβ”€β”€ ovnk_benchmark_config.py # Configuration management β”‚ └── metrics-base.yml # Prometheus metrics definitions β”œβ”€β”€ analysis/ β”‚ └── ovnk_benchmark_performance_analysis.py # Performance analysis β”œβ”€β”€ elt/ β”‚ └── ovnk_benchmark_elt_duckdb.py # Data processing β”œβ”€β”€ storage/ β”‚ └── ovnk_benchmark_prometheus_ovnk.py # DuckDB storage └── exports/ # Generated reports ``` ## Configuration ### Environment Variables | Variable | Description | Default | |----------|-------------|---------| | `KUBECONFIG` | Path to kubeconfig file | `~/.kube/config` | | `OPENAI_API_KEY` | OpenAI API key for AI features | Required for reports | | `MCP_SERVER_URL` | MCP server URL | `http://localhost:8000` | | `COLLECTION_DURATION` | Metrics collection duration | `5m` | | `REPORT_PERIOD_DAYS` | Report period in days | `7` | | `DATABASE_PATH` | DuckDB database path | `storage/ovnk_benchmark.db` | | `REPORT_OUTPUT_DIR` | Report output directory | `exports` | export OVNK_PROMETHEUS_USE_ROUTE=true # Use OpenShift routes (default) export OVNK_PROMETHEUS_NAMESPACE=openshift-monitoring export OVNK_PROMETHEUS_SA=prometheus-k8s export KUBECONFIG=/path/to/kubeconfig ### Metrics Configuration The `config/metrics-base.yml` file defines all Prometheus queries organized by category: - **General Information**: Pod and namespace status - **API Server**: Request latency and error rates - **Multus**: CNI resource usage - **OVN Control Plane/Node**: CPU and memory metrics - **OVN Containers**: Database and controller metrics - **OVS Containers**: OVS daemon metrics - **OVN Sync**: Synchronization duration metrics ## API Reference ### MCP Tools The server exposes the following MCP tools: #### `get_openshift_general_info` Get general cluster information including NetworkPolicy, AdminNetworkPolicy, and EgressFirewall counts. **Parameters:** - `namespace` (optional): Specific namespace to query **Response:** ```json { "timestamp": "2024-01-01T00:00:00Z", "summary": { "total_networkpolicies": 10, "total_adminnetworkpolicies": 2, "total_egressfirewalls": 5, "total_namespaces": 25, "total_nodes": 6 } } ``` #### `query_kube_api_metrics` Query Kubernetes API server performance metrics. **Parameters:** - `duration` (optional): Query duration (default: "5m") - `start_time` (optional): Start time in ISO format - `end_time` (optional): End time in ISO format #### `query_multus_metrics` Query Multus CNI performance metrics. #### `query_ovnk_pods_metrics` Query OVN-Kubernetes pod performance metrics. #### `query_ovnk_containers_metrics` Query OVN-Kubernetes container metrics. #### `query_ovnk_sync_metrics` Query OVN-Kubernetes synchronization metrics. #### `store_performance_data` Store performance data in DuckDB. #### `get_performance_history` Retrieve historical performance data. ## AI Agents ### Performance Data Collection Agent Uses LangGraph to orchestrate data collection: 1. **Initialize**: Setup collection parameters 2. **Collect General Info**: Gather cluster information 3. **Collect Metrics**: Query each component category 4. **Store Data**: Save to DuckDB storage 5. **Finalize**: Generate collection summary ### Report Generation Agent Uses LangGraph with AI analysis: 1. **Fetch Historical Data**: Retrieve performance history 2. **Analyze Performance**: Calculate trends and statistics 3. **Generate Insights**: Use AI for recommendations 4. **Create Reports**: Generate Excel and PDF reports 5. **Finalize**: Output summary and files ## Storage Schema ### DuckDB Tables - **`metrics`**: Individual metric data points - **`metric_summaries`**: Category performance summaries - **`performance_snapshots`**: Complete performance snapshots - **`benchmark_runs`**: Benchmark execution records - **`alerts_history`**: Historical alert data ## Report Types ### Excel Reports - **Executive Summary**: Key performance indicators - **Historical Trends**: Time-series performance data - **Category Analysis**: Component-specific metrics - **Recommendations**: AI-generated insights - **Raw Data**: Complete dataset ### PDF Reports - **Executive Summary**: High-level performance overview - **Key Metrics**: Performance indicator tables - **Category Analysis**: Component performance breakdown - **Recommendations**: Prioritized action items ## Troubleshooting ### Common Issues #### Authentication Problems ```bash # Test cluster connectivity kubectl cluster-info # Verify kubeconfig export KUBECONFIG=/path/to/config ./ovnk_benchmark_mcp_command.sh test ``` #### Prometheus Discovery ```bash # Check Prometheus pods kubectl get pods -n openshift-monitoring | grep prometheus # Verify service accounts kubectl get sa -n openshift-monitoring ``` #### MCP Server Issues ```bash # Check server logs tail -f logs/mcp_server_*.log # Test server connectivity curl http://localhost:8000/health ``` ### Debug Mode Enable debug logging: ```bash export LOG_LEVEL=DEBUG export OVNK_LOG_LEVEL=DEBUG ./ovnk_benchmark_mcp_command.sh server ``` ## Contributing 1. **Fork the repository** 2. **Create a feature branch** 3. **Add tests for new functionality** 4. **Submit a pull request** ### Development Setup ```bash # Install development dependencies pip install -e .[dev] # Run tests pytest # Format code black . # Type checking mypy . ``` ## License MIT License - see LICENSE file for details. ## Support For issues and questions: 1. **Check the troubleshooting section** 2. **Review logs in the `logs/` directory** 3. **Open an issue with detailed logs and configuration** ## Roadmap - [ ] Kubernetes native deployment (Helm charts) - [ ] Grafana dashboard integration - [ ] Custom alert rule definitions - [ ] Multi-cluster support - [ ] Real-time streaming metrics - [ ] Advanced ML-based anomaly detection - [ ] Integration with CI/CD pipelines --- **Note**: This tool is designed for OpenShift clusters with OVN-Kubernetes networking. Some features may not be available on other Kubernetes distributions.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/liqcui/ovnk-benchmark-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server