# list_tables 工具功能说明
## 🎯 新增功能
我已经成功为SQLx MCP服务器添加了增强的`list_tables`工具,它现在返回包含丰富metadata的表信息。
## 📊 返回的Table Metadata
### 通用字段(所有数据库)
- `table_name`: 表名
- `table_schema`: 表所属的schema/数据库
- `table_type`: 表类型 (BASE TABLE, VIEW等)
- `table_comment`: 表注释/描述
- `row_count`: 估计行数
### PostgreSQL 特有
- 从`pg_class`获取表注释
- 从`pg_stat_user_tables`获取行数统计
- 支持public schema的表
### MySQL 特有
- `created_at`: 表创建时间
- `updated_at`: 表最后更新时间
- `engine`: 存储引擎 (InnoDB, MyISAM等)
- `collation`: 字符集排序规则
- 完整的information_schema信息
### SQLite 特有
- 从CREATE TABLE语句提取注释
- 实时计算行数
- 引擎标识为"SQLite"
## 🔧 SQL查询实现
### PostgreSQL
```sql
SELECT
t.table_name,
t.table_schema,
t.table_type,
obj_description(c.oid) as table_comment,
s.n_tup_ins + s.n_tup_upd + s.n_tup_del as row_count
FROM information_schema.tables t
LEFT JOIN pg_class c ON c.relname = t.table_name
LEFT JOIN pg_stat_user_tables s ON s.relname = t.table_name
WHERE t.table_schema = 'public' AND t.table_type = 'BASE TABLE'
ORDER BY t.table_name
```
### MySQL
```sql
SELECT
t.TABLE_NAME as table_name,
t.TABLE_SCHEMA as table_schema,
t.TABLE_TYPE as table_type,
t.TABLE_COMMENT as table_comment,
t.TABLE_ROWS as row_count,
t.CREATE_TIME as created_at,
t.UPDATE_TIME as updated_at,
t.ENGINE as engine,
t.TABLE_COLLATION as collation
FROM information_schema.TABLES t
WHERE t.TABLE_SCHEMA = DATABASE() AND t.TABLE_TYPE = 'BASE TABLE'
ORDER BY t.TABLE_NAME
```
### SQLite
```sql
SELECT
name as table_name,
sql
FROM sqlite_master
WHERE type = 'table' AND name NOT LIKE 'sqlite_%'
ORDER BY name
```
## 📋 使用示例
### 调用方式
```json
{
"name": "list_tables",
"arguments": {
"database_url": "postgresql://user:pass@localhost/mydb"
}
}
```
### 返回示例 (PostgreSQL)
```json
[
{
"table_name": "users",
"table_schema": "public",
"table_type": "BASE TABLE",
"table_comment": "User account information",
"row_count": 1250,
"created_at": null,
"updated_at": null,
"engine": null,
"collation": null
},
{
"table_name": "orders",
"table_schema": "public",
"table_type": "BASE TABLE",
"table_comment": "Customer order records",
"row_count": 5432,
"created_at": null,
"updated_at": null,
"engine": null,
"collation": null
}
]
```
### 返回示例 (MySQL)
```json
[
{
"table_name": "products",
"table_schema": "ecommerce",
"table_type": "BASE TABLE",
"table_comment": "Product catalog with pricing",
"row_count": 10000,
"created_at": "2024-01-15 10:30:00",
"updated_at": "2024-08-20 15:45:00",
"engine": "InnoDB",
"collation": "utf8mb4_unicode_ci"
}
]
```
### 返回示例 (SQLite)
```json
[
{
"table_name": "customers",
"table_schema": null,
"table_type": "table",
"table_comment": "Customer contact information",
"row_count": 500,
"created_at": null,
"updated_at": null,
"engine": "SQLite",
"collation": null
}
]
```
## 🎯 实用价值
### 1. 数据库探索
- 快速了解数据库中所有表的概况
- 查看表的用途说明(注释)
- 评估数据规模(行数)
### 2. 数据库管理
- 检查表的创建和更新时间(MySQL)
- 了解存储引擎配置(MySQL)
- 识别字符集设置(MySQL)
### 3. 性能分析
- 基于行数识别大表
- 评估查询复杂度
- 规划索引策略
### 4. 文档生成
- 自动提取表注释作为文档
- 生成数据库schema概览
- 创建数据字典
## ✅ 改进对比
### 改进前
```rust
pub async fn list_tables(&self) -> Result<Vec<String>>
```
- 只返回表名字符串列表
- 无metadata信息
- 功能单一
### 改进后
```rust
pub async fn list_tables(&self) -> Result<Vec<TableMetadata>>
```
- 返回丰富的metadata结构
- 包含注释、行数、时间戳等
- 支持数据库特有字段
- 为数据分析提供更多上下文
## 🚀 集成建议
这个增强的`list_tables`工具现在可以作为:
- 数据库文档工具的基础
- BI工具的数据源发现
- 数据管理平台的元数据接口
- 自动化数据分析的起点
新功能保持了MCP协议的兼容性,同时大大提升了数据库探索的效率!