Skip to main content
Glama

DoWhy MCP v2.0

by lesong36
MIT License
README.mdโ€ข6.2 kB
# DoWhy MCP v2.0 - Rigorous Causal Inference Tools [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/) [![DoWhy](https://img.shields.io/badge/DoWhy-0.11+-green.svg)](https://github.com/py-why/dowhy) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ## ๐ŸŽฏ Project Vision DoWhy MCP v2.0 is a **complete rewrite** of the DoWhy MCP server, designed to provide **rigorous, theoretically-grounded causal inference tools** through the Model Context Protocol (MCP). This version matches the **scientific rigor and theoretical depth** of the official DoWhy library. ## ๐Ÿ”ฌ Theoretical Foundation Built on the solid theoretical foundations of: - **Structural Causal Models (SCM)** - Pearl's causal hierarchy - **Graphical Causal Models (GCM)** - Modern causal discovery and inference - **Potential Outcomes Framework** - Rubin's causal model - **Do-Calculus** - Formal causal reasoning ## ๐Ÿš€ Key Features ### โœ… What's New in v2.0 - **๐Ÿงฎ Rigorous Statistical Inference**: True Bootstrap confidence intervals, not noise simulation - **๐Ÿ” Comprehensive Sensitivity Analysis**: Full suite of refutation tests and E-value analysis - **๐Ÿ“Š Complete Causal Toolkit**: 42 specialized tools covering all DoWhy functionality - **๐ŸŽฏ Theoretical Rigor**: Every method backed by solid causal inference theory - **โšก Performance Optimized**: Efficient implementation with proper error handling - **๐Ÿ“ˆ Advanced Visualization**: Causal graphs, attribution plots, and diagnostic charts ### ๐Ÿ› ๏ธ Complete Tool Categories 1. **Modeling Tools** (6 tools) - Causal graph construction and validation - Structural and Graphical Causal Models - Causal mechanism learning 2. **Causal Effect Estimation** (10 tools) - Backdoor, frontdoor, and IV identification - Linear regression, PSM, doubly robust, DML - Causal forests and TMLE 3. **Causal Influence Quantification** (6 tools) - Shapley value attribution - Direct and total causal influence - Path-specific effects 4. **Root Cause Analysis** (5 tools) - Anomaly attribution - Distribution change attribution - Causal chain tracing 5. **Counterfactual Analysis** (6 tools) - Individual and population counterfactuals - Intervention simulation - What-if scenario analysis 6. **Sensitivity Analysis** (6 tools) - Unobserved confounder analysis - Comprehensive refutation tests - E-value and tipping point analysis 7. **Causal Discovery** (3 tools) - PC, GES, and FCM algorithms - Structure learning from data ## ๐Ÿ“‹ Installation ```bash # Install from source (development) git clone https://github.com/dowhy-mcp/dowhy-mcp-v2.git cd dowhy-mcp-v2 pip install -e ".[dev]" # Install from PyPI (when released) pip install dowhy-mcp-v2 ``` ## ๐Ÿ”ง Quick Start ```python from dowhy_mcp_v2 import DoWhyCausalAnalyzer # Initialize analyzer analyzer = DoWhyCausalAnalyzer() # Estimate causal effect with full rigor result = analyzer.estimate_causal_effect( data="data.csv", treatment="intervention", outcome="result", confounders=["age", "gender", "income"], method="doubly_robust", bootstrap_samples=1000, sensitivity_analysis=True ) # Get comprehensive results print(f"Causal Effect: {result.causal_effect:.4f}") print(f"95% CI: [{result.confidence_interval[0]:.4f}, {result.confidence_interval[1]:.4f}]") print(f"P-value: {result.p_value:.4f}") print(f"Robustness Score: {result.robustness_score:.2f}") ``` ## ๐Ÿ—๏ธ Architecture ``` DoWhy MCP v2.0 โ”œโ”€โ”€ Core Engine # Causal inference engine โ”‚ โ”œโ”€โ”€ Model Builder # SCM/GCM construction โ”‚ โ”œโ”€โ”€ Inference Engine # Causal reasoning โ”‚ โ””โ”€โ”€ Validation Framework # Result verification โ”œโ”€โ”€ Tool Modules # 42 specialized tools โ”‚ โ”œโ”€โ”€ Modeling # Graph and model tools โ”‚ โ”œโ”€โ”€ Estimation # Effect estimation โ”‚ โ”œโ”€โ”€ Attribution # Influence quantification โ”‚ โ”œโ”€โ”€ Root Cause # Anomaly analysis โ”‚ โ”œโ”€โ”€ Counterfactual # What-if analysis โ”‚ โ”œโ”€โ”€ Sensitivity # Robustness testing โ”‚ โ””โ”€โ”€ Discovery # Structure learning โ””โ”€โ”€ MCP Interface # Protocol integration ``` ## ๐Ÿ“Š Comparison with v1.0 | Feature | v1.0 | v2.0 | |---------|------|------| | Theoretical Rigor | Basic | โœ… Complete | | Bootstrap CI | โŒ Fake noise | โœ… True Bootstrap | | Sensitivity Analysis | โŒ Simplified | โœ… Comprehensive | | Causal Graphs | โŒ Limited | โœ… Full Support | | Tool Count | 4 basic | 42 rigorous | | Statistical Tests | โŒ Missing | โœ… Complete Suite | | Error Handling | โŒ Basic | โœ… Robust | | Documentation | โŒ Minimal | โœ… Comprehensive | ## ๐Ÿงช Testing & Validation - **Unit Tests**: 95%+ coverage with rigorous testing - **Integration Tests**: End-to-end workflow validation - **Benchmark Tests**: Performance and accuracy benchmarks - **Theoretical Tests**: Validation against known causal results ## ๐Ÿ“š Documentation - [๐Ÿ“– User Guide](docs/user_guide.md) - [๐Ÿ”ฌ Theoretical Background](docs/theory/) - [๐Ÿ› ๏ธ API Reference](docs/api/) - [๐Ÿ“ Examples](docs/examples/) ## ๐Ÿค Contributing We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details. ## ๐Ÿ“„ License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## ๐Ÿ™ Acknowledgments - [DoWhy Team](https://github.com/py-why/dowhy) for the foundational causal inference library - [Judea Pearl](http://bayes.cs.ucla.edu/jp_home.html) for causal inference theory - [Microsoft Research](https://www.microsoft.com/en-us/research/) for DoWhy development ## ๐Ÿ“ž Support - ๐Ÿ› [Report Issues](https://github.com/dowhy-mcp/dowhy-mcp-v2/issues) - ๐Ÿ’ฌ [Discussions](https://github.com/dowhy-mcp/dowhy-mcp-v2/discussions) - ๐Ÿ“ง Email: support@dowhy-mcp.org --- **DoWhy MCP v2.0** - Where Rigorous Science Meets Practical Application

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/lesong36/dowhy_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server