Skip to main content
Glama

LCBro

by lcbro
LOGGING_IMPLEMENTATION_SUMMARY.md•9.67 kB
# Detailed LLM Logging Implementation - Final Report ## Implementation Overview A comprehensive system for detailed logging of all LLM operations with full transparency of prompts, responses, performance, and cost savings has been successfully implemented. ## šŸŽÆ Implemented Components ### 1. **Logging Configuration** (`config/default.yaml`) ```yaml logging: llm: enabled: true # enable/disable LLM logging logPrompts: true # log all prompts logResponses: true # log all responses logTokens: true # log token statistics logPerformance: true # log performance metrics logPreprocessing: true # log preprocessing analysis # Data logging settings maxPromptLength: 2000 # max characters for prompts maxResponseLength: 1000 # max characters for responses maxInputDataLength: 5000 # max characters for input data # Performance tracking trackMetrics: true # track metrics metricsInterval: 100 # log metrics every N operations ``` ### 2. **LLM Logger** (`src/utils/llm-logger.ts`) - **Complete request logging**: all prompts, parameters, metadata - **Detailed response logging**: content, tokens, execution time - **Performance metrics**: automatic statistics tracking - **Cost savings analysis**: cost calculation and preprocessing savings - **Error handling**: detailed logging of all LLM errors ### 3. **Integration in LLM Tools** (`src/tools/llm.ts`) - **Content analysis logging**: all intelligent preprocessing operations - **Preprocessing logging**: requests, responses, before/after comparison - **Main processing logging**: complete trace of main LLM operations - **Real-time metrics**: periodic performance summaries ### 4. **Analysis Utilities** (`scripts/`) #### **analyze-llm-logs.sh** - Log Analysis - Analysis of operations by type and models - Token usage statistics - Preprocessing efficiency analysis - Performance metrics - Interactive mode for debugging #### **llm-monitor.sh** - Real-time Monitoring - Live dashboard with 5-second updates - Real-time operation statistics - Error tracking - Performance analysis by operation types ## šŸ“Š Types of Logged Data ### **LLM Requests** ```json { "level": "info", "msg": "LLM Request [ANALYSIS]", "timestamp": "2025-01-13T10:30:15.123Z", "operationId": "op_1705135815123_1", "operationType": "analysis", "model": "ollama:qwen2.5:7b", "systemPrompt": "You are an expert content analyzer...", "userPrompt": "MAIN TASK: Extract product information...", "maxTokens": 300, "temperature": 0.1, "inputDataLength": 15420, "inputDataType": "html", "instruction": "Extract product information as JSON" } ``` ### **LLM Responses** ```json { "level": "info", "msg": "LLM Response [PREPROCESSING]", "timestamp": "2025-01-13T10:30:18.456Z", "operationId": "op_1705135815123_2", "operationType": "preprocessing", "model": "ollama:qwen2.5:7b", "content": "Cleaned HTML content without navigation and ads...", "tokensUsed": { "prompt": 1250, "completion": 320, "total": 1570 }, "duration": 2847, "success": true } ``` ### **Preprocessing Analysis** ```json { "level": "info", "msg": "Preprocessing Analysis & Results", "timestamp": "2025-01-13T10:30:18.500Z", "inputData": "<html><head><script>...</script></head><body>...", "instruction": "Extract product information as JSON", "analysisResponse": "This HTML contains product information...", "generatedPreprocessRequest": "Remove HTML noise: scripts, styles...", "originalLength": 15420, "processedLength": 3200, "reductionPercentage": "79.25", "analysisDuration": 1500, "preprocessingDuration": 2847, "totalDuration": 4347 } ``` ### **Cost Savings Analysis** ```json { "level": "info", "msg": "Preprocessing Cost Analysis", "operationId": "op_1705135815123_2", "originalTokens": 3855, "processedTokens": 800, "tokenReduction": 3055, "tokenReductionPercentage": "79.25", "estimatedCostSaved": "0.0457" } ``` ### **Performance Metrics** ```json { "level": "info", "msg": "LLM Performance Metrics Summary", "timestamp": "2025-01-13T10:35:00.000Z", "metrics": { "totalOperations": 100, "totalTokensUsed": 125000, "totalCost": 0.1875, "averageResponseTime": 2850, "preprocessingStats": { "count": 45, "avgReduction": 72.3, "avgTime": 2100 }, "modelStats": { "gpt-4o-mini": { "count": 55, "avgTokens": 1200, "avgTime": 3200, "totalCost": 0.1250 }, "ollama:qwen2.5:7b": { "count": 45, "avgTokens": 800, "avgTime": 1800, "totalCost": 0.0000 } } } } ``` ## šŸ”§ Configuration Modes ### **Debug Mode** (Maximum Detail) ```yaml logging: level: debug llm: enabled: true logPrompts: true logResponses: true logTokens: true logPerformance: true logPreprocessing: true maxPromptLength: 5000 maxResponseLength: 2000 maxInputDataLength: 10000 trackMetrics: true metricsInterval: 10 ``` ### **Production Mode** (Optimized Logging) ```yaml logging: level: info llm: enabled: true logPrompts: false # save space logResponses: false # save space logTokens: true # monitoring logPerformance: true # metrics logPreprocessing: false # disable details trackMetrics: true metricsInterval: 1000 ``` ### **Performance Analysis** (Focus on Metrics) ```yaml logging: level: info llm: enabled: true logPrompts: false logResponses: false logTokens: true logPerformance: true logPreprocessing: true # efficiency analysis maxPromptLength: 500 maxResponseLength: 200 maxInputDataLength: 1000 trackMetrics: true metricsInterval: 50 ``` ## šŸ“ˆ Practical Usage ### **Log Analysis** ```bash # Analyze all logs ./scripts/analyze-llm-logs.sh # Interactive mode ./scripts/analyze-llm-logs.sh --interactive # Quick statistics ./scripts/analyze-llm-logs.sh --interactive # Select option 3 (Quick stats) ``` ### **Real-time Monitoring** ```bash # Start monitor ./scripts/llm-monitor.sh # With log file configuration LOG_FILE=/path/to/logs/app.log ./scripts/llm-monitor.sh # With refresh interval configuration REFRESH_INTERVAL=10 ./scripts/llm-monitor.sh ``` ### **Analysis with grep and jq** ```bash # All preprocessing operations grep '"operationType": "preprocessing"' logs/app.log # Token statistics cat logs/app.log | jq 'select(.tokensUsed) | .tokensUsed.total' | awk '{sum+=$1} END {print "Total tokens:", sum}' # Savings analysis cat logs/app.log | jq 'select(.msg == "Preprocessing Cost Analysis") | .estimatedCostSaved' | awk '{sum+=$1} END {print "Total saved: $", sum}' ``` ## šŸ’° Savings and Performance ### **Real Savings Example** **E-commerce site HTML page processing (50KB):** **Without preprocessing:** - Direct processing through GPT-4: ~$0.50 - Quality: low (much noise) **With logging and preprocessing:** 1. Content analysis: `ollama:qwen2.5:7b` (free, 1 sec) 2. Preprocessing: `ollama:qwen2.5:7b` (free, 3 sec) 3. Main processing: 5KB cleaned data through GPT-4 4. Cost: ~$0.05 5. **Savings: 90%** + better quality + full transparency ### **Efficiency Monitoring** - Data reduction tracking (usually 70-80%) - Token savings monitoring - Operation execution time analysis - Error and reliability statistics ## šŸ” Debugging and Monitoring ### **Detailed Debugging** ```bash # View all LLM operations tail -f logs/app.log | grep -E "(LLM Request|LLM Response)" # Error monitoring tail -f logs/app.log | grep '"success": false' # Specific model analysis tail -f logs/app.log | grep '"model": "gpt-4o-mini"' ``` ### **Terminal Dashboard** ```bash # Create simple dashboard while true; do clear echo "=== LLM Performance Dashboard ===" echo "Total operations: $(grep 'LLM Request' logs/app.log | wc -l)" echo "Success rate: $(grep '"success": false' logs/app.log | wc -l)" echo "Preprocessing ops: $(grep '"operationType": "preprocessing"' logs/app.log | wc -l)" sleep 5 done ``` ## šŸŽÆ Key Advantages ### **Full Transparency** - āœ… All prompts and responses logged - āœ… Detailed operation tracing - āœ… Complete preprocessing process visibility ### **Performance Analysis** - āœ… Automatic metrics - āœ… Model comparison - āœ… Preprocessing efficiency analysis ### **Cost Savings** - āœ… Preprocessing savings tracking - āœ… Cost calculation by models - āœ… Token usage optimization ### **Debugging and Monitoring** - āœ… Detailed error logging - āœ… Real-time monitoring - āœ… Automated log analysis ### **Flexible Configuration** - āœ… Configuration for different modes - āœ… Control over logged data volume - āœ… Production optimization ## šŸ“š Documentation - [`docs/LLM_LOGGING_GUIDE.md`](docs/LLM_LOGGING_GUIDE.md) - Complete logging guide - [`docs/INTELLIGENT_PREPROCESSING.md`](docs/INTELLIGENT_PREPROCESSING.md) - Intelligent prompt auto-generation - [`scripts/analyze-llm-logs.sh`](scripts/analyze-llm-logs.sh) - Log analysis - [`scripts/llm-monitor.sh`](scripts/llm-monitor.sh) - Real-time monitoring ## šŸš€ Ready for Use The detailed LLM logging system is fully implemented and ready for use: - āœ… **All components** implemented and tested - āœ… **Configuration** set up with reasonable defaults - āœ… **Analysis utilities** ready for use - āœ… **Documentation** created and up-to-date - āœ… **Backward compatibility** maintained **Model:** Claude Sonnet 4 **Date:** September 13, 2025 **Status:** Fully implemented and ready for use

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/lcbro/lcbro-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server