Skip to main content
Glama

LangExtract MCP Server

by larsenweigle
langextract.md8.64 kB
# LangExtract Library Study Notes ## Overview LangExtract is a Python library developed by Google that uses Large Language Models (LLMs) to extract structured information from unstructured text documents based on user-defined instructions. It's designed to process materials like clinical notes, reports, and other documents while maintaining precise source grounding. ## Key Features & Differentiators ### 1. Precise Source Grounding - **Capability**: Maps every extraction to its exact location in the source text - **Benefit**: Enables visual highlighting for easy traceability and verification - **Implementation**: Through annotation system that tracks character positions ### 2. Reliable Structured Outputs - **Schema Enforcement**: Consistent output schema based on few-shot examples - **Controlled Generation**: Leverages structured output capabilities in supported models (Gemini) - **Format Support**: JSON and YAML output formats ### 3. Long Document Optimization - **Challenge Addressed**: "Needle-in-a-haystack" problem in large documents - **Strategy**: Text chunking + parallel processing + multiple extraction passes - **Benefit**: Higher recall on complex documents ### 4. Interactive Visualization - **Output**: Self-contained HTML files for reviewing extractions - **Scalability**: Handles thousands of extracted entities - **Context**: Shows entities in their original document context ### 5. Flexible LLM Support - **Cloud Models**: Google Gemini family, OpenAI models - **Local Models**: Built-in Ollama interface - **Extensibility**: Can be extended to other APIs ### 6. Domain Adaptability - **No Fine-tuning**: Uses few-shot examples instead of model training - **Flexibility**: Works across any domain with proper examples - **Customization**: Leverages LLM world knowledge through prompt engineering ## Core Architecture ### Main Components #### 1. Data Models (`data.py`) - **ExampleData**: Defines extraction examples with text and expected extractions - **Extraction**: Individual extracted entity with class, text, and attributes - **Document**: Input document container - **AnnotatedDocument**: Result container with extractions and metadata #### 2. Inference Engine (`inference.py`) - **GeminiLanguageModel**: Google Gemini API integration - **OpenAILanguageModel**: OpenAI API integration - **BaseLanguageModel**: Abstract base for language model implementations - **Schema Support**: Structured output generation for supported models #### 3. Annotation System (`annotation.py`) - **Annotator**: Core extraction orchestrator - **Text Processing**: Handles chunking and parallel processing - **Progress Tracking**: Monitors extraction progress #### 4. Resolver System (`resolver.py`) - **Purpose**: Parses raw LLM output into structured Extraction objects - **Fence Handling**: Extracts content from markdown code blocks - **Format Parsing**: Handles JSON/YAML parsing and validation #### 5. Chunking Engine (`chunking.py`) - **Text Segmentation**: Breaks long documents into processable chunks - **Buffer Management**: Handles max_char_buffer limits - **Overlap Strategy**: Maintains context across chunk boundaries #### 6. Visualization (`visualization.py`) - **HTML Generation**: Creates interactive visualization files - **Entity Highlighting**: Shows extractions in original context - **Scalable Interface**: Handles large result sets efficiently #### 7. I/O Operations (`io.py`) - **URL Download**: Fetches text from web URLs - **File Operations**: Saves results to JSONL format - **Document Loading**: Handles various input formats ### Key API Functions #### Primary Interface ```python lx.extract( text_or_documents, # Input text, URL, or Document objects prompt_description, # Extraction instructions examples, # Few-shot examples model_id="gemini-2.5-flash", # Configuration options... ) ``` #### Visualization ```python lx.visualize(jsonl_file_path) # Generate HTML visualization ``` #### I/O Operations ```python lx.io.save_annotated_documents(results, output_name, output_dir) ``` ## Configuration Parameters ### Core Parameters - **model_id**: LLM model selection - **api_key**: Authentication for cloud models - **temperature**: Sampling temperature (0.5 recommended) - **max_char_buffer**: Chunk size limit (1000 default) ### Performance Parameters - **max_workers**: Parallel processing workers (10 default) - **batch_length**: Chunks per batch (10 default) - **extraction_passes**: Multiple extraction attempts (1 default) ### Output Control - **format_type**: JSON or YAML output - **fence_output**: Code fence expectations - **use_schema_constraints**: Structured output enforcement ## Supported Models ### Google Gemini - **gemini-2.5-flash**: Recommended default (speed/cost/quality balance) - **gemini-2.5-pro**: For complex reasoning tasks - **Schema Support**: Full structured output support - **Rate Limits**: Tier 2 quota recommended for production ### OpenAI - **gpt-4o**: Supported with limitations - **Requirements**: `fence_output=True`, `use_schema_constraints=False` - **Note**: Schema constraints not yet implemented for OpenAI ### Local Models - **Ollama**: Built-in support - **Extension**: Can be extended to other local APIs ## Use Cases & Examples ### 1. Literary Analysis - **Characters**: Extract character names and emotional states - **Relationships**: Identify character interactions and metaphors - **Context**: Track narrative elements across long texts ### 2. Medical Document Processing - **Medications**: Extract drug names, dosages, routes, frequencies - **Clinical Notes**: Structure unstructured medical reports - **Compliance**: Maintain source grounding for medical accuracy ### 3. Radiology Reports - **Structured Data**: Convert free-text reports to structured findings - **Demo Available**: RadExtract on HuggingFace Spaces ### 4. Long Document Processing - **Full Novels**: Process complete books (e.g., Romeo & Juliet - 147k chars) - **Performance**: Parallel processing with multiple passes - **Visualization**: Handle hundreds of entities in context ## Technical Implementation Details ### Text Processing Pipeline 1. **Input Validation**: Validate text/documents and examples 2. **URL Handling**: Download content if URL provided 3. **Chunking**: Break long texts into manageable pieces 4. **Parallel Processing**: Distribute chunks across workers 5. **Multiple Passes**: Optional additional extraction rounds 6. **Resolution**: Parse LLM outputs into structured data 7. **Annotation**: Create AnnotatedDocument with source grounding 8. **Visualization**: Generate interactive HTML output ### Error Handling - **API Failures**: Graceful handling of LLM API errors - **Parsing Errors**: Robust JSON/YAML parsing with fallbacks - **Validation**: Schema validation for structured outputs ### Performance Optimization - **Concurrent Processing**: Parallel chunk processing - **Efficient Chunking**: Smart text segmentation - **Progressive Enhancement**: Multiple passes for better recall - **Memory Management**: Efficient handling of large documents ## MCP Server Design Implications Based on langextract's architecture, a FastMCP server should expose: ### Core Tools 1. **extract_text**: Main extraction function 2. **extract_from_url**: URL-based extraction 3. **visualize_results**: Generate HTML visualization 4. **validate_examples**: Validate extraction examples ### Configuration Management 1. **set_model**: Configure LLM model 2. **set_api_key**: Set authentication 3. **configure_extraction**: Set extraction parameters ### File Operations 1. **save_results**: Save to JSONL format 2. **load_results**: Load previous results 3. **export_visualization**: Generate and save HTML ### Advanced Features 1. **batch_extract**: Process multiple documents 2. **progressive_extract**: Multi-pass extraction 3. **compare_results**: Compare extraction results ### Resource Management - **Model Configurations**: Manage different model setups - **Example Templates**: Store reusable extraction examples - **Result Archives**: Access previous extraction results ## Dependencies & Installation - **Core**: Python 3.10+, requests, dotenv - **LLM APIs**: google-generativeai, openai - **Processing**: concurrent.futures for parallelization - **Visualization**: HTML/CSS/JS generation - **Format Support**: JSON, YAML parsing ## Licensing & Usage - **License**: Apache 2.0 - **Disclaimer**: Not officially supported Google product - **Health Applications**: Subject to Health AI Developer Foundations Terms - **Citation**: Recommended for production/publication use

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/larsenweigle/langextract-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server