Skip to main content
Glama

Task Trellis MCP

listObjects.ts1.9 kB
import { TrellisObject, TrellisObjectPriority, TrellisObjectStatus, TrellisObjectSummary, TrellisObjectType, } from "../../models"; import { Repository } from "../../repositories"; function convertToSummary(obj: TrellisObject): TrellisObjectSummary { return { id: obj.id, type: obj.type, title: obj.title, status: obj.status, priority: obj.priority, parent: obj.parent, prerequisites: obj.prerequisites, childrenIds: obj.childrenIds, created: obj.created, updated: obj.updated, }; } const normalizeEnumInput = <T>(input: T | T[] | undefined): T[] | undefined => { if (input === undefined) return undefined; return Array.isArray(input) ? input : [input]; }; export async function listObjects( repository: Repository, type?: TrellisObjectType | TrellisObjectType[], scope?: string, status?: TrellisObjectStatus | TrellisObjectStatus[], priority?: TrellisObjectPriority | TrellisObjectPriority[], includeClosed: boolean = false, ): Promise<{ content: Array<{ type: string; text: string }> }> { try { // Normalize inputs to arrays const normalizedType = normalizeEnumInput(type); const normalizedStatus = normalizeEnumInput(status); const normalizedPriority = normalizeEnumInput(priority); // Get objects from repository const objects = await repository.getObjects( includeClosed, scope, normalizedType, normalizedStatus, normalizedPriority, ); const objectSummaries = objects.map(convertToSummary); return { content: [ { type: "text", text: JSON.stringify(objectSummaries, null, 2), }, ], }; } catch (error) { return { content: [ { type: "text", text: `Error listing objects: ${error instanceof Error ? error.message : String(error)}`, }, ], }; } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/langadventurellc/task-trellis-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server