Skip to main content
Glama
labeveryday

YouTube MCP Server Enhanced

by labeveryday

YouTube MCP Server Enhanced πŸš€

A comprehensive Micro-Conversational Processor (MCP) server for extracting and analyzing YouTube data using yt-dlp.

πŸš€ Features

Core Extraction

  • Video Information: Metadata, statistics, engagement metrics

  • Channel Information: Stats, subscriber count, view count, verification status

  • Playlist Details: Video lists, durations, total views

  • Comments: Threaded comments with replies and engagement

  • Transcripts: Auto-generated and manual subtitles

Advanced Capabilities

  • YouTube Search: Search for videos, channels, and playlists

  • Trending Videos: Get trending content by region

  • Batch Processing: Extract from multiple URLs concurrently

  • Intelligent Caching: Configurable TTL-based caching

  • Automatic Retries: Exponential backoff for failed requests

  • Health Monitoring: Real-time extractor status and configuration

πŸ› οΈ Installation

Prerequisites

  • Python 3.10+

  • uv (required)

  • yt-dlp (automatically installed via uv)

⚠️ Important: This project requires

# Install uv (macOS/Linux) curl -LsSf https://astral.sh/uv/install.sh | sh # Or via Homebrew (macOS) brew install uv # Or via pip pip install uv

Setup

# Clone the repository git clone <repository-url> cd youtube-mcp-server-enhanced # Install yt-dlp and all dependencies uv add yt-dlp uv sync # Verify installation uv run yt-dlp --version

βš™οΈ Configuration

Environment Variables (.env file)

Create a .env file in the project root to configure the server:

# Copy the example file cp .env.example .env # Edit with your preferred settings nano .env

Example .env configuration:

# Rate limiting (e.g., "500K" for 500KB/s, "1M" for 1MB/s) YOUTUBE_RATE_LIMIT=500K # Retry configuration YOUTUBE_MAX_RETRIES=5 YOUTUBE_RETRY_DELAY=2.0 YOUTUBE_TIMEOUT=600 # Caching YOUTUBE_ENABLE_CACHE=true YOUTUBE_CACHE_TTL=3600 # Logging level LOG_LEVEL=INFO

MCP Client Configuration

Claude Desktop (macOS)

Add to your ~/Library/Application Support/Claude/claude_desktop_config.json:

{ "mcpServers": { "youtube-mcp-server": { "command": "uv", "args": [ "run", "--directory", "/path/to/youtube-mcp-server-enhanced", "python", "-m", "src.youtube_mcp_server.server" ], "env": { "YOUTUBE_RATE_LIMIT": "500K", "YOUTUBE_MAX_RETRIES": "5", "YOUTUBE_RETRY_DELAY": "2.0", "YOUTUBE_TIMEOUT": "600", "YOUTUBE_ENABLE_CACHE": "true", "YOUTUBE_CACHE_TTL": "3600" } } } }

Other MCP Clients

For other MCP clients, configure the server command as:

uv run --directory /path/to/youtube-mcp-server-enhanced python -m src.youtube_mcp_server.server

Default Values

  • Rate Limit: None (uses YouTube's default)

  • Max Retries: 5 (increased from 3 for better reliability)

  • Retry Delay: 2.0 seconds (with exponential backoff)

  • Timeout: 600 seconds (10 minutes)

  • Cache TTL: 3600 seconds (1 hour)

  • Cache: Enabled by default

🎯 Available MCP Tools

Data Extraction

Tool

Description

Example

get_video_info()

Extract comprehensive video metadata

get_video_info("https://youtube.com/watch?v=...")

get_channel_info()

Extract channel information and stats (supports multiple URL formats)

get_channel_info("https://youtube.com/@channel") or get_channel_info("https://youtube.com/ChannelName")

get_playlist_info()

Extract playlist details and video list

get_playlist_info("https://youtube.com/playlist?list=...")

get_video_comments()

Extract video comments and replies

get_video_comments("https://youtube.com/watch?v=...", 50)

get_video_transcript()

Extract video transcripts/subtitles

get_video_transcript("https://youtube.com/watch?v=...")

Search & Discovery

Tool

Description

Example

search_youtube()

Search for videos, channels, or playlists

search_youtube("Python tutorials", "video", 20)

get_trending_videos()

Get trending videos by region

get_trending_videos("US", 15)

Analysis & Insights

Tool

Description

Example

analyze_video_engagement()

Analyze engagement metrics with benchmarks

analyze_video_engagement("https://youtube.com/watch?v=...")

search_transcript()

Search for text within video transcripts

search_transcript("https://youtube.com/watch?v=...", "query")

Batch Operations

Tool

Description

Example

batch_extract_urls()

Process multiple URLs concurrently

batch_extract_urls(["url1", "url2"], "video")

System Management

Tool

Description

Example

get_extractor_health()

Monitor extractor health and status

get_extractor_health()

get_extractor_config()

View current configuration

get_extractor_config()

clear_extractor_cache()

Clear all cached data

clear_extractor_cache()

MCP Prompts

Prompt

Description

Example

analyze-video

Comprehensive video analysis with optional comments/transcript

analyze-video(url, include_comments=true, include_transcript=true)

compare-videos

Compare engagement metrics across multiple videos

compare-videos([url1, url2, url3])

πŸ“Š Data Models

VideoInfo

{ "metadata": { "id": "video_id", "title": "Video Title", "description": "Video description...", "uploader": "Channel Name", "uploader_id": "channel_id", "upload_date": "20240101", "tags": ["tag1", "tag2"], "categories": ["Entertainment"], "thumbnail": "https://..." }, "statistics": { "view_count": 1000, "like_count": 50, "comment_count": 25, "duration_seconds": 120, "duration_string": "2:00" }, "engagement": { "like_to_view_ratio": 0.05, "comment_to_view_ratio": 0.025, "like_rate_percentage": "5.000%", "comment_rate_percentage": "2.500%" }, "technical": { "age_limit": 0, "availability": "public", "live_status": "not_live" } }

ChannelInfo

{ "id": "channel_id", "name": "Channel Name", "url": "https://youtube.com/@channel", "description": "Channel description...", "avatar_url": "https://...", "banner_url": "https://...", "verified": true, "country": "US", "language": "en", "tags": ["tag1", "tag2"], "statistics": { "subscriber_count": 10000, "video_count": 150, "view_count": 500000 } }

PlaylistInfo

{ "id": "playlist_id", "title": "Playlist Title", "description": "Playlist description...", "uploader": "Channel Name", "uploader_id": "channel_id", "video_count": 25, "total_duration_seconds": 7200, "total_duration_formatted": "2h 0m", "total_views": 50000, "videos": [ { "video_id": "video_id", "title": "Video Title", "uploader": "Channel Name", "duration": 300, "view_count": 2000, "playlist_index": 1 } ] }

πŸ” Usage Examples

Basic Video Analysis

# Get comprehensive video information video_info = await get_video_info("https://www.youtube.com/watch?v=dQw4w9WgXcQ") # Extract video comments comments = await get_video_comments("https://www.youtube.com/watch?v=dQw4w9WgXcQ", max_comments=50) # Get video transcript transcript = await get_video_transcript("https://www.youtube.com/watch?v=dQw4w9WgXcQ") # Search within transcript results = await search_transcript("https://www.youtube.com/watch?v=dQw4w9WgXcQ", "never gonna")

Channel and Playlist Analysis

# Get channel information channel_info = await get_channel_info("https://www.youtube.com/@RickAstleyYT") # Get playlist details playlist_info = await get_playlist_info("https://www.youtube.com/playlist?list=...")

Search and Discovery

# Search for videos results = await search_youtube("Python programming tutorials", "video", 10) # Get trending videos trending = await get_trending_videos("US", 20)

Advanced Analysis

# Analyze video engagement with benchmarks engagement = await analyze_video_engagement("https://www.youtube.com/watch?v=dQw4w9WgXcQ") # Compare multiple videos comparison = await compare_videos([ "https://youtube.com/watch?v=video1", "https://youtube.com/watch?v=video2" ])

Batch Processing

# Process multiple URLs concurrently results = await batch_extract_urls([ "https://youtube.com/watch?v=video1", "https://youtube.com/watch?v=video2" ], "video")

⚑ Performance Features

Caching

  • In-Memory Cache: Configurable TTL-based caching

  • Cache Keys: Unique keys for each request type and parameters

  • Cache Management: View stats, clear cache, configure TTL

Retry Logic

  • Automatic Retries: Configurable retry attempts

  • Exponential Backoff: Increasing delay between retries

  • Error Handling: Graceful degradation on failures

Batch Processing

  • Concurrent Extraction: Process multiple URLs simultaneously using asyncio

  • Async Operations: Non-blocking I/O for better performance

  • Result Aggregation: Combined results with success/failure counts

πŸ₯ Health Monitoring

Health Status

health = await get_extractor_health() # Returns: { "health": { "status": "healthy", "yt_dlp_available": true, "yt_dlp_version": "2025.6.30", "cache": {"enabled": true, "size": 5, "ttl": 3600}, "config": {"rate_limit": "1M", "max_retries": 3, "timeout": 300} }, "cache": { "enabled": true, "size": 5, "ttl": 3600, "keys": ["key1", "key2"], "total_keys": 5 }, "server_version": "0.1.0", "mcp_version": "1.0.0" }

Configuration View

config = await get_extractor_config() # Returns current extractor settings and status

🚨 Error Handling

Retry Strategy

  • Automatic Retries: Up to 5 attempts by default (configurable)

  • Exponential Backoff: 2s, 4s, 8s delays

  • Rate Limiting: 500KB/s limit with 2-second sleep intervals

  • Graceful Degradation: Return partial results when possible

Error Types

  • YouTubeExtractorError: Extraction-specific errors

  • InvalidURLError: Invalid YouTube URL format

  • RuntimeError: General execution errors

Troubleshooting

Rate Limiting Issues

If you encounter rate limiting:

  1. Increase sleep intervals in .env: YOUTUBE_RETRY_DELAY=3.0

  2. Lower rate limit: YOUTUBE_RATE_LIMIT=300K

  3. Reduce concurrent requests

yt-dlp Not Working

  1. Ensure uv is installed: uv --version

  2. Verify yt-dlp installation: uv run yt-dlp --version

  3. The server automatically uses uv run yt-dlp if direct access fails

MCP Connection Issues

  1. Restart your MCP client after code changes

  2. Check logs for specific error messages

  3. Verify environment variables are loaded correctly

πŸ”§ Development

Running the Server

⚠️ Always use

# Start the MCP server (recommended) uv run python -m src.youtube_mcp_server.server # Or if you have a run_server.py file uv run python run_server.py

Testing

# Run all tests uv run pytest tests/ # Run specific test file uv run pytest tests/test_basic.py # Run with coverage uv run pytest --cov=src tests/

πŸ“ˆ Use Cases

Content Analysis

  • Video Performance: Analyze view counts, engagement metrics

  • Channel Growth: Track subscriber and view count trends

  • Content Discovery: Find trending and popular content

Research & Analytics

  • Market Research: Analyze competitor channels and content

  • Trend Analysis: Identify trending topics and content types

  • Audience Insights: Understand viewer preferences and behavior

Content Management

  • Playlist Organization: Manage and analyze video collections

  • Comment Moderation: Extract and analyze user feedback

  • Transcript Analysis: Process and search video content

🀝 Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests for new functionality

  5. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • yt-dlp: The core YouTube extraction engine

  • FastMCP: The MCP server framework

  • Pydantic: Data validation and serialization

πŸ“ž Support

πŸ—ΊοΈ Roadmap

  • Batch processing for multiple videos

  • Caching layer for improved performance

  • Advanced analytics (engagement analysis, benchmarks)

  • Rate limiting and quota management

  • Export functionality (JSON, CSV, etc.)

  • WebSocket support for real-time updates

  • Integration examples with popular MCP clients


Made with ❀️ by Du'An Lightfoot

Empowering developers to extract meaningful insights from YouTube content through the Model Context Protocol.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/labeveryday/youtube-mcp-server-enhanced'

If you have feedback or need assistance with the MCP directory API, please join our Discord server