Skip to main content
Glama

run_monte_carlo

Simulate random portfolio allocations to identify optimal risk-return combinations through Monte Carlo analysis.

Instructions

Run Monte Carlo simulation to find optimal portfolios.

Generates random portfolio weight combinations and evaluates their risk/return characteristics to find optimal allocations.

Note: This is computationally intensive. For large num_trials, consider using the Efficient Frontier method instead which provides mathematically optimal solutions.

Args: name: The portfolio name. num_trials: Number of random portfolios to generate (default: 5000).

Returns: Dictionary containing: - num_trials: Number of simulations run - min_volatility_portfolio: Portfolio with minimum volatility - max_sharpe_portfolio: Portfolio with maximum Sharpe ratio - simulation_stats: Statistics about the simulation - sample_portfolios: Sample of generated portfolios

Example: result = run_monte_carlo(name="tech_stocks", num_trials=10000) best = result['max_sharpe_portfolio'] print(f"Best Sharpe: {best['sharpe_ratio']:.2f}") print(f"Optimal weights: {best['weights']}")

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
nameYes
num_trialsNo

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/l4b4r4b4b4/portfolio-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server