Skip to main content
Glama

Podman MCP Server

by kunwarmahen

Podman MCP Server

Container management made accessible through the Model Context Protocol.

Overview

The Podman MCP Server exposes container management capabilities through MCP, allowing AI tools and applications to:

  • List and inspect running containers

  • Start, stop, and restart containers

  • Execute commands inside containers

  • View container logs

  • Manage container images

  • Monitor container resource usage

Designed for seamless integration with the MCP Discovery Hub for automatic network discovery.

Features

Container Management

  • List containers: View all running or stopped containers

  • Container info: Inspect detailed container information

  • Start/Stop/Restart: Control container lifecycle

  • Execute commands: Run commands inside containers

  • View logs: Access container logs with configurable line count

  • Resource stats: Monitor CPU, memory, and I/O usage

Image Management

  • List images: View all available container images

  • Pull images: Download images from registries

Network Discovery

  • Automatic broadcasting: Announces itself on the network via multicast

  • Zero-configuration: No manual registration needed

  • Multi-transport support: Works with HTTP and streamable-http

Installation

Prerequisites

  • Python 3.10+

  • Podman installed and running

  • uv package manager (or pip)

Setup

# Clone or navigate to project cd podman-mcp-server # Install dependencies uv sync # Or with pip: pip install -r requirements.txt

Configuration

Environment Variables

# Transport mode MCP_TRANSPORT=http # http, streamable-http, or stdio (default) # Server settings MCP_HOST=0.0.0.0 # Binding host MCP_PORT=3001 # Server port MCP_SERVER_NAME=Podman MCP Server # Display name # Broadcasting (for MCP Discovery Hub) MCP_ENABLE_BROADCAST=true # Enable/disable broadcasting MCP_BROADCAST_INTERVAL=30 # Seconds between announcements

.env File

Create a .env file in the project root:

MCP_TRANSPORT=http MCP_PORT=3001 MCP_SERVER_NAME=Podman MCP Server MCP_ENABLE_BROADCAST=true MCP_BROADCAST_INTERVAL=30

Usage

Start in HTTP Mode (with broadcasting)

# Using environment variables MCP_TRANSPORT=http MCP_PORT=3001 uv run main.py # Or with .env file uv run main.py

Start in Streamable-HTTP Mode

MCP_TRANSPORT=streamable-http MCP_PORT=3001 uv run main.py

Start in Stdio Mode (for Claude)

# Default mode, works with Claude Desktop uv run main.py

Available Tools

Containers

List Containers

list_containers(all: bool = False)

List running containers (or all if all=true)

Example:

{ "method": "tools/call", "params": { "name": "list_containers", "arguments": { "all": true } } }

Container Info

container_info(container: str)

Get detailed information about a specific container

Start Container

start_container(container: str)

Start a stopped container

Stop Container

stop_container(container: str, timeout: int = 10)

Stop a running container (gracefully, with timeout in seconds)

Restart Container

restart_container(container: str)

Restart a container

Container Logs

container_logs(container: str, tail: int = 100)

Get logs from a container (last N lines)

Run Container

run_container( image: str, name: str = None, detach: bool = True, ports: List[str] = [], env: List[str] = [], volumes: List[str] = [] )

Run a new container

Example:

{ "method": "tools/call", "params": { "name": "run_container", "arguments": { "image": "nginx:latest", "name": "my-webserver", "ports": ["8080:80"], "detach": true } } }

Remove Container

remove_container(container: str, force: bool = False)

Remove a container (force if running)

Exec in Container

exec_container(container: str, command: List[str])

Execute a command inside a container

Container Stats

container_stats(container: str = None, no_stream: bool = True)

Get resource usage statistics for containers

Images

List Images

list_images(all: bool = False)

List available container images

Pull Image

pull_image(image: str)

Pull/download an image from a registry

Integration with MCP Discovery Hub

Automatic Discovery

When broadcasting is enabled, this server automatically registers with the MCP Discovery Hub:

  1. Server broadcasts: Every 30 seconds, announces itself on 239.255.255.250:5353

  2. Hub discovers: Discovery hub receives announcement and probes the server

  3. Tools registered: All 12 container management tools become available network-wide

Manual Registration

If running without broadcasting:

# Scan for the server manually curl -X POST http://localhost:8000/scan \ -H "Content-Type: application/json" \ -d '{"ports": [3001]}'

API Endpoints (When in HTTP Mode)

GET /

Server info endpoint

curl http://localhost:3001/

Response:

{ "name": "Podman MCP Server", "version": "1.0.0", "protocol": "MCP Streamable HTTP", "endpoint": "/mcp" }

POST /mcp

MCP protocol endpoint

All MCP communication happens here (initialize, tools/list, tools/call)

Use Cases

1. Container Orchestration

Use with AI tools to manage containerized applications:

"User: Start a new web server and configure it" AI: I'll start an nginx container for you... → calls run_container(image="nginx", name="webserver", ports=["8080:80"])

2. Monitoring and Debugging

Check container status and logs:

"User: What's the status of my database container?" AI: Let me check the logs and stats... → calls container_logs(container="postgres", tail=50) → calls container_stats(container="postgres")

3. Multi-Server Management

Deploy and manage containers across multiple hosts:

Host 1: Podman MCP Server (port 3001) Host 2: Podman MCP Server (port 3001) Host 3: MCP Discovery Hub (port 8000) ↓ All containers managed from single AI interface

4. Development Workflows

Quickly spin up development environments:

"User: Set up a development database for testing" AI: I'll create a PostgreSQL container for you... → calls run_container( image="postgres:15", name="dev-db", env=["POSTGRES_PASSWORD=devpass"] )

Logs

Server logs are written to podman_mcp.log:

# View logs tail -f podman_mcp.log # Check for errors grep ERROR podman_mcp.log

Troubleshooting

Port Already in Use

# Use a different port MCP_PORT=3002 uv run main.py

Broadcasting Not Working

Check multicast connectivity:

# Verify multicast is enabled ip route show # Check firewall sudo firewall-cmd --add-service=mdns --permanent

Podman Connection Error

Ensure Podman is running:

# Start Podman service systemctl start podman # Verify connection podman ps

Performance Considerations

  • Container operations: Most operations complete within 100-500ms

  • Log retrieval: Depends on log size and network speed

  • Broadcasting overhead: Minimal (30-byte UDP packets every 30 seconds)

  • Connection pooling: Configured with pool_size=5 for efficiency

Security

Best Practices

  1. Run in isolated networks: Deploy in trusted network environments

  2. Use firewall rules: Restrict access to the MCP port

  3. Disable broadcasting in untrusted networks: Set MCP_ENABLE_BROADCAST=false

  4. Monitor logs: Regularly check for unauthorized access attempts

Limitations

  • No built-in authentication (rely on network security)

  • No resource quotas (AI can run unlimited containers)

  • Commands run with same privileges as Podman daemon

Consider adding a reverse proxy with authentication for production use.

Requirements

  • Python 3.10+

  • FastAPI

  • SQLAlchemy

  • FastMCP

  • python-dotenv

Contributing

Improvements welcome! Areas for enhancement:

  • Container networking configuration

  • Image building and pushing

  • Volume management

  • Container health monitoring

  • Network performance metrics

License

MIT License - See LICENSE file for details

Support

  • Issues: Report on GitHub

  • Documentation: See MCP Discovery Hub wiki

  • Examples: Check examples/ directory

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kunwarmahen/podman-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server