Skip to main content
Glama

nft-analytics-mcp

main.py4.4 kB
from mcp.server.fastmcp import FastMCP import httpx import os from dotenv import load_dotenv import pandas as pd # Load environment variables load_dotenv() # Initialize MCP server mcp = FastMCP( name="NFT Analytics", dependencies=["httpx", "python-dotenv", "pandas"] ) # Configuration DUNE_API_KEY = os.getenv("DUNE_API_KEY") BASE_URL = "https://api.dune.com/api/v1" HEADERS = {"X-Dune-API-Key": DUNE_API_KEY} def get_latest_result(query_id: int, limit: int = 1000) -> list: """ Fetch the latest results from a Dune Analytics query. Args: query_id (int): The ID of the Dune query to fetch results from. limit (int, optional): Maximum number of rows to return. Defaults to 1000. Returns: list: A list of dictionaries containing the query results, or an empty list if the request fails. Raises: httpx.HTTPStatusError: If the API request fails due to a client or server error. """ url = f"{BASE_URL}/query/{query_id}/results" params = {"limit": limit} with httpx.Client() as client: response = client.get(url, params=params, headers=HEADERS, timeout=300) response.raise_for_status() data = response.json() result_data = data.get("result", {}).get("rows", []) return result_data @mcp.tool() def get_daily_trading_volume_by_collection(limit: int = 1000) -> str: """ Retrieve daily trading volume for top 5 Ethereum NFT collections. Args: limit (int, optional): Maximum number of rows to fetch from the query. Defaults to 1000. Returns: str: Markdown table of daily trading volumes by collection, or error message if the query fails. """ try: data = get_latest_result(5140422, limit=limit) df = pd.DataFrame(data) df["day"] = pd.to_datetime(df["day"]).dt.date pivot_df = df.pivot(index="day", columns="collection", values="daily_volume") pivot_df = pivot_df.sort_index(ascending=False) return pivot_df.to_markdown() except Exception as e: return str(e) @mcp.tool() def get_daily_sales_by_collection(limit: int = 1000) -> str: """ Retrieve number of daily sales for NFT collections. Args: limit (int, optional): Maximum number of rows to fetch from the query. Defaults to 1000. Returns: str: Markdown table of daily sales counts by collection, or error message if the query fails. """ try: data = get_latest_result(5140487, limit=limit) df = pd.DataFrame(data) df["day"] = pd.to_datetime(df["day"]).dt.date pivot_df = df.pivot(index="day", columns="collection", values="sales_count") pivot_df = pivot_df.sort_index(ascending=False) return pivot_df.to_markdown() except Exception as e: return str(e) @mcp.tool() def get_average_price_by_collection(limit: int = 1000) -> str: """ Retrieve average selling price for NFT collections. Args: limit (int, optional): Maximum number of rows to fetch from the query. Defaults to 1000. Returns: str: Markdown table of average prices by collection, or error message if the query fails. """ try: data = get_latest_result(5140470, limit=limit) df = pd.DataFrame(data) return df.to_markdown() except Exception as e: return str(e) @mcp.tool() def get_unique_traders_by_collection(limit: int = 1000) -> str: """ Retrieve count of unique buyers and sellers for NFT collections. Args: limit (int, optional): Maximum number of rows to fetch from the query. Defaults to 1000. Returns: str: Markdown table of unique traders by collection, or error message if the query fails. """ try: data = get_latest_result(5140464, limit=limit) df = pd.DataFrame(data) return df.to_markdown() except Exception as e: return str(e) @mcp.tool() def get_new_owners() -> str: """ Retrieve count of new NFT owners. Returns: str: Count of new wallet owners as a string, or "N/A" if no data is available, or error message if the query fails. """ try: data = get_latest_result(5140497) return data[0].get("new_wallets", "N/A") except Exception as e: return str(e) # Run the server if __name__ == "__main__": mcp.run()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kukapay/nft-analytics-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server