Skip to main content
Glama
cli.py5.63 kB
import os import httpx from datetime import datetime from dotenv import load_dotenv from mcp.server.fastmcp import FastMCP, Context from mcp.types import PromptMessage, TextContent from typing import List, Dict, Any import pandas as pd # Load environment variables from .env file load_dotenv() # Initialize FastMCP server mcp = FastMCP("ETF-Flow-MCP", dependencies=["httpx", "python-dotenv", "pandas"]) # CoinGlass API configuration COINGLASS_API_BASE = "https://open-api-v4.coinglass.com" COINGLASS_API_KEY = os.getenv("COINGLASS_API_KEY") if not COINGLASS_API_KEY: raise ValueError("COINGLASS_API_KEY not found in environment variables") # Helper function to make CoinGlass API requests async def fetch_coinglass_data(endpoint: str) -> Dict: """ Make an HTTP GET request to the CoinGlass API. Args: endpoint (str): API endpoint (e.g., '/api/etf/bitcoin/flow-history') Returns: Dict: JSON response from the API """ headers = { "accept": "application/json", "CG-API-KEY": COINGLASS_API_KEY } async with httpx.AsyncClient() as client: try: response = await client.get( f"{COINGLASS_API_BASE}{endpoint}", headers=headers ) response.raise_for_status() return response.json() except httpx.HTTPError as e: raise Exception(f"API request failed: {str(e)}") # Helper function to format data into a Markdown table using pandas pivot table def format_to_markdown_table(data: List[Dict], coin: str) -> str: """ Format ETF flow data into a Markdown table using pandas pivot table. Args: data (List[Dict]): List of ETF flow data entries coin (str): Cryptocurrency ('BTC' or 'ETH') Returns: str: Markdown table string """ if not data: return f"No {coin} ETF flow data available" # Prepare data for pandas records = [] for entry in data: timestamp = entry.get("timestamp") if not timestamp: continue date_str = datetime.fromtimestamp(timestamp / 1000).strftime("%Y-%m-%d") for etf in entry.get("etf_flows", []): ticker = etf.get("etf_ticker") flow = etf.get("change_usd") if ticker: records.append({ "Date": date_str, "Ticker": ticker, "Flow": flow }) if not records: return f"No {coin} ETF flow data available" # Create DataFrame df = pd.DataFrame(records) # Create pivot table pivot = df.pivot_table( values="Flow", index="Date", columns="Ticker", aggfunc="sum", fill_value=0 ) # Sort dates in descending order pivot = pivot.sort_index(ascending=False) # Calculate total column pivot["Total"] = pivot.sum(axis=1) # Convert to Markdown table markdown = pivot.to_markdown(floatfmt=".0f") return markdown # Tool to fetch ETF flow history for BTC or ETH @mcp.tool() async def get_etf_flow(coin: str, ctx: Context = None) -> str: """ Fetch historical ETF flow data for BTC or ETH from CoinGlass API and return as a Markdown table. Parameters: coin (str): Cryptocurrency to query ('BTC' or 'ETH'). Returns: str: Markdown table with ETF flow data (tickers as columns, dates as rows, with total column). """ coin = coin.upper() if coin not in ["BTC", "ETH"]: return "Invalid coin specified. Please use 'BTC' or 'ETH'." ctx.info(f"Fetching {coin} ETF flow data") endpoint = f"/api/etf/{'bitcoin' if coin == 'BTC' else 'ethereum'}/flow-history" try: data = await fetch_coinglass_data(endpoint) if data.get("code") == "0" and data.get("data"): return format_to_markdown_table(data["data"], coin) else: return f"No {coin} ETF flow data available" except Exception as e: return f"Error fetching {coin} ETF flow: {str(e)}" # Prompt to guide users in querying ETF flows @mcp.prompt() def etf_flow_prompt(coin: str) -> List[PromptMessage]: """ Create a prompt for querying BTC or ETH ETF flow data. Args: coin (str): Cryptocurrency to query ('BTC' or 'ETH'). Returns: List[PromptMessage]: List of prompt messages to guide LLM interaction. """ coin = coin.upper() if coin not in ["BTC", "ETH"]: return [ PromptMessage( role="user", content=TextContent( type="text", text="Invalid coin specified. Please use 'BTC' or 'ETH'." ) ) ] return [ PromptMessage( role="user", content=TextContent( type="text", text=( f"Fetch the historical {coin} ETF flow data. " "Return the results in a Markdown table with tickers as columns, dates as rows in descending order, " "and a total column summing all tickers." ) ) ), PromptMessage( role="assistant", content=TextContent( type="text", text=( f"I will use the get_etf_flow tool to fetch the {coin} ETF flow data and format it as a Markdown table. " "Please wait while I retrieve the information." ) ) ) ] # Main execution def main() -> None: mcp.run()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kukapay/etf-flow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server