Skip to main content
Glama

get_yoy_monthly_trading_volume_by_aggragator

Analyze year-over-year monthly trading volume trends by aggregator. Retrieve data in a markdown-formatted pivot table to compare metrics across years and months.

Instructions

Retrieve year-over-year monthly trading volume by aggregator. This tool fetches year-over-year monthly trading volume data for aggregators from a Dune Analytics query and returns it in a markdown-formatted pivot table, with years as the index and months as columns. Args: limit (int, optional): Maximum number of rows to retrieve from the query. Defaults to 1000. Returns: str: A markdown-formatted pivot table of trading volume data, or an error message if the query fails.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
limitNo

Implementation Reference

  • main.py:176-195 (handler)
    The handler function that executes the tool logic: fetches data from Dune query ID 4424 using the shared get_latest_result helper, processes it into a pivot table by year and month using pandas, sorts it, and returns a markdown-formatted table or error message.
    def get_yoy_monthly_trading_volume_by_aggragator(limit: int = 1000) -> str: """ Retrieve year-over-year monthly trading volume by aggregator. This tool fetches year-over-year monthly trading volume data for aggregators from a Dune Analytics query and returns it in a markdown-formatted pivot table, with years as the index and months as columns. Args: limit (int, optional): Maximum number of rows to retrieve from the query. Defaults to 1000. Returns: str: A markdown-formatted pivot table of trading volume data, or an error message if the query fails. """ try: data = get_latest_result(4424, limit=limit) df = pd.DataFrame(data) pivot_df = df.pivot(index="year", columns="month", values="usd_volume") pivot_df = pivot_df.sort_index(ascending=False) return pivot_df.to_markdown() except Exception as e: return str(e)
  • main.py:175-175 (registration)
    The @mcp.tool() decorator registers the get_yoy_monthly_trading_volume_by_aggragator function as an MCP tool in the FastMCP server.
    @mcp.tool()
  • main.py:21-43 (helper)
    Shared helper function used by the tool (and others) to fetch latest results from a specified Dune Analytics query ID using the Dune API.
    def get_latest_result(query_id: int, limit: int = 1000) -> list: """ Fetch the latest results from a Dune Analytics query. Args: query_id (int): The ID of the Dune query to fetch results from. limit (int, optional): Maximum number of rows to return. Defaults to 1000. Returns: list: A list of dictionaries containing the query results, or an empty list if the request fails. Raises: httpx.HTTPStatusError: If the API request fails due to a client or server error. """ url = f"{BASE_URL}/query/{query_id}/results" params = {"limit": limit} with httpx.Client() as client: response = client.get(url, params=params, headers=HEADERS, timeout=300) response.raise_for_status() data = response.json() result_data = data.get("result", {}).get("rows", []) return result_data

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kukapay/dex-metrics-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server