Skip to main content
Glama

iRAG MCP Server

by kuai0901
test-model-config.js4.22 kB
#!/usr/bin/env node /** * 测试MODEL配置参数 */ import { config } from 'dotenv'; import { getConfig } from './dist/config/index.js'; import { initializeLogger } from './dist/utils/logger.js'; // 加载环境变量 config(); async function testModelConfig() { try { // 初始化日志 await initializeLogger('info'); console.log('🔧 测试MODEL配置参数...'); // 获取当前配置 const serverConfig = getConfig(); console.log('📋 当前配置:'); console.log('- 默认模型:', serverConfig.defaultModel); console.log('- 资源模式:', serverConfig.resourceMode); console.log('- 保存路径:', serverConfig.basePath || '默认桌面路径'); console.log('- API超时:', serverConfig.apiTimeout, 'ms'); console.log('- 最大重试:', serverConfig.maxRetries); // 验证模型配置 const supportedModels = ['irag-1.0', 'flux.1-schnell']; if (supportedModels.includes(serverConfig.defaultModel)) { console.log('✅ 默认模型配置有效'); } else { console.log('❌ 默认模型配置无效'); return; } // 测试不同的MODEL环境变量值 const testCases = [ { name: '测试irag-1.0模型', model: 'irag-1.0', description: '百度自研模型,通用性好,速度快' }, { name: '测试flux.1-schnell模型', model: 'flux.1-schnell', description: '支持更多高级参数,质量更高' } ]; for (const testCase of testCases) { console.log(`\n🧪 ${testCase.name}`); console.log(`- 模型: ${testCase.model}`); console.log(`- 描述: ${testCase.description}`); // 临时设置环境变量 const originalModel = process.env.MODEL; process.env.MODEL = testCase.model; try { // 重新加载配置 const { getConfig } = await import('./dist/config/index.js'); const testConfig = getConfig(); console.log(`- 配置结果: ${testConfig.defaultModel}`); if (testConfig.defaultModel === testCase.model) { console.log('✅ 配置加载成功'); } else { console.log('❌ 配置加载失败'); } } catch (error) { console.log('❌ 配置测试失败:', error.message); } finally { // 恢复原始环境变量 if (originalModel) { process.env.MODEL = originalModel; } else { delete process.env.MODEL; } } } // 测试无效模型值 console.log('\n🧪 测试无效模型配置'); const originalModel = process.env.MODEL; process.env.MODEL = 'invalid-model'; try { const { getConfig } = await import('./dist/config/index.js'); getConfig(); console.log('❌ 应该抛出验证错误'); } catch (error) { if (error.message.includes('配置验证失败')) { console.log('✅ 正确拒绝了无效模型配置'); console.log('- 错误信息:', error.message.split('\n')[1] || error.message); } else { console.log('❌ 意外的错误:', error.message); } } finally { // 恢复原始环境变量 if (originalModel) { process.env.MODEL = originalModel; } else { delete process.env.MODEL; } } console.log('\n📊 测试总结:'); console.log('✅ MODEL配置参数工作正常'); console.log('✅ 支持irag-1.0和flux.1-schnell模型'); console.log('✅ 正确验证无效配置'); console.log('✅ 默认值设置正确'); console.log('\n💡 使用建议:'); console.log('1. 在.env文件中设置 MODEL=irag-1.0 使用百度自研模型'); console.log('2. 设置 MODEL=flux.1-schnell 使用高质量模型'); console.log('3. 用户仍可在请求中覆盖默认模型'); console.log('4. 配置的默认模型会在MCP工具描述中显示'); console.log('\n🎉 MODEL配置测试完成!'); } catch (error) { console.error('❌ 测试失败:', error.message); process.exit(1); } } // 运行测试 testModelConfig().catch(console.error);

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kuai0901/irag-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server