Skip to main content
Glama

ToolFront MCP Server

by kruskal-labs

Simple data retrieval for AI with unmatched control, precision, and speed.


Documentation: docs.toolfront.ai


Installation

Install with pip or your favorite PyPI package manager.

pip install toolfront

Example 1: Text2SQL with ChatGPT

from toolfront import Database db = Database("postgres://user:pass@localhost:5432/mydb", model="openai:gpt-4o") context = "We're an e-commerce company. Sales data is in the `cust_orders` table." # Returns a string answer = db.ask("What's our best-selling product?", context=context) # >>> "Wireless Headphones Pro"

Note: For databases, install with PyPI extras, e.g.: pip install "toolfront[postgres]". See the documentation for the complete list of 10+ databases.

Example 2: API retrieval with Claude

from toolfront import API api = API("http://localhost:8000/openapi.json", model="anthropic:claude-3-5-sonnet") # Returns a list of integers answer: list[int] = api.ask("Get the last 5 order IDs for user_id=42") # >>> [1001, 998, 987, 976, 965]

Note: ToolFront supports any API with an OpenAPI (formerly Swagger) specification. Most common APIs like Slack, Discord, and GitHub have OpenAPI specs. See the documentation for more details.

Example 3: Document information extraction with Gemini

from toolfront import Document from pydantic import BaseModel, Field class CompanyReport(BaseModel): company_name: str = Field(..., description="Name of the company") revenue: int | float = Field(..., description="Annual revenue in USD") is_profitable: bool = Field(..., description="Whether the company is profitable") doc = Document("/path/annual_report.pdf", model="google:gemini-pro") # Returns a structured Pydantic object answer: CompanyReport = doc.ask("Extract the key company information from this report") # >>> CompanyReport(company_name="TechCorp Inc.", revenue=2500000, is_profitable=True)

Note: ToolFront supports OpenAI, Anthropic, Google, xAI, and 14+ AI model providers. See the documentation for the complete list.

Example 4: Snowflake MCP Server

{ "mcpServers": { "toolfront": { "command": "uvx", "args": [ "toolfront[snowflake]", "snowflake://user:pass@account/warehouse/database" ] } } }

Community & Contributing

License

This project is licensed under the terms of the MIT license.

-
security - not tested
A
license - permissive license
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Securely connects AI agents to multiple databases simultaneously while enabling collaborative learning from team query patterns, all while keeping data private by running locally.

  1. Example 1: Text2SQL with ChatGPT
    1. Example 2: API retrieval with Claude
      1. Example 3: Document information extraction with Gemini
        1. Example 4: Snowflake MCP Server
          1. Community & Contributing
            1. License

              Related MCP Servers

              • -
                security
                F
                license
                -
                quality
                Integrates with the AgentCraft framework to enable secure communication and data exchange between AI agents, supporting both premade and custom enterprise AI agents.
                Last updated -
                1
                Python
                • Apple
                • Linux
              • -
                security
                F
                license
                -
                quality
                Enables secure interaction with MySQL databases, allowing AI assistants to list tables, read data, and execute SQL queries through a controlled interface.
                Last updated -
                Python
                • Linux
                • Apple
              • -
                security
                F
                license
                -
                quality
                A powerful server that enables AI agents to interact with MySQL databases, execute SQL queries, and manage database content through a simple interface.
                Last updated -
                29
                5
                JavaScript
                • Apple
              • A
                security
                A
                license
                A
                quality
                Enables AI agents to interact with multiple LLM providers (OpenAI, Anthropic, Google, DeepSeek) through a standardized interface, making it easy to switch between models or use multiple models in the same application.
                Last updated -
                1
                5
                Python
                MIT License
                • Linux
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/kruskal-labs/toolfront'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server