Skip to main content
Glama

Databricks MCP Server

by knustx
README.md5.73 kB
# Databricks MCP Server A Model Context Protocol (MCP) server that provides seamless integration with Databricks Unity Catalog. This server enables AI assistants to interact with your Databricks workspace, query metadata, sample data, and perform various Unity Catalog operations. ## Features - **Unity Catalog Integration**: Browse catalogs, schemas, and tables - **Metadata Querying**: Get detailed information about tables, columns, and properties - **Data Sampling**: Sample data from tables for analysis - **SQL Query Execution**: Run SQL queries against your Databricks warehouses - **Table Search**: Search for tables by name or metadata - **Data Discovery**: Advanced search and filtering capabilities - **Data Quality Insights**: Basic data quality analysis - **Lineage Information**: Table lineage tracking (when available) ## Installation ### Prerequisites - Python 3.8 or higher - Databricks workspace access - Databricks personal access token ### Install from Source ```bash git clone <repository-url> cd databricks-mcp-server pip install -e . ``` ### Install Development Dependencies ```bash pip install -e ".[dev]" ``` ## Configuration ### Environment Variables Set the following environment variables: ```bash export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com" export DATABRICKS_TOKEN="your-personal-access-token" export DATABRICKS_WAREHOUSE_ID="your-warehouse-id" # Optional but recommended export LOG_LEVEL="INFO" # Optional ``` ### Configuration File Alternatively, create a `config.json` file: ```json { "databricks_host": "https://your-workspace.cloud.databricks.com", "databricks_token": "your-personal-access-token", "databricks_warehouse_id": "your-warehouse-id", "log_level": "INFO" } ``` ## Usage ### Running the Server ```bash # Run directly python -m databricks_mcp_server.server # Or use the installed command databricks-mcp-server ``` ### MCP Client Integration The server implements the Model Context Protocol and can be used with any MCP-compatible client. Here's an example configuration for Claude Desktop: ```json { "mcpServers": { "databricks": { "command": "databricks-mcp-server", "env": { "DATABRICKS_HOST": "https://your-workspace.cloud.databricks.com", "DATABRICKS_TOKEN": "your-token" } } } } ``` ## Available Tools ### Catalog Operations - `list_catalogs`: List all Unity Catalog catalogs - `list_schemas`: List schemas in a catalog - `list_tables`: List tables in a schema ### Table Operations - `describe_table`: Get detailed table information including columns and metadata - `sample_table`: Sample data from a table (configurable limit) - `search_tables`: Search for tables by name or metadata ### Query Operations - `execute_query`: Execute SQL queries against Databricks warehouses - `get_table_lineage`: Get lineage information for tables ## Resources The server exposes Databricks resources through URIs: - `databricks://catalog/{catalog_name}`: Catalog information - `databricks://catalog/{catalog_name}/{schema_name}`: Schema information - `databricks://catalog/{catalog_name}/{schema_name}/{table_name}`: Table information ## Examples ### Basic Usage ```python from databricks_mcp_server import DatabricksClient # Initialize client client = await DatabricksClient.create() # List catalogs catalogs = await client.list_catalogs() print(f"Found {len(catalogs)} catalogs") # Get table info table_info = await client.describe_table("main", "default", "my_table") print(f"Table has {len(table_info.columns)} columns") # Sample data sample = await client.sample_table("main", "default", "my_table", limit=5) print(f"Sampled {sample.row_count} rows") ``` ### Advanced Data Discovery ```python from databricks_mcp_server import UnityCatalogManager # Initialize manager manager = UnityCatalogManager(client) # Discover tables with patterns results = await manager.discover_data( search_patterns=["customer", "user"], catalogs=["main", "analytics"], include_metadata=True ) print(f"Found {results.total_tables} matching tables") ``` ## Development ### Running Tests ```bash pytest ``` ### Code Formatting ```bash black src/ tests/ isort src/ tests/ ``` ### Type Checking ```bash mypy src/ ``` ## Troubleshooting ### Common Issues 1. **Authentication Error**: Verify your `DATABRICKS_TOKEN` is valid and has appropriate permissions 2. **Connection Error**: Check that `DATABRICKS_HOST` is correct and accessible 3. **No Warehouses**: Ensure you have at least one SQL warehouse running in your workspace ### Debugging Enable debug logging: ```bash export LOG_LEVEL=DEBUG databricks-mcp-server ``` ### Configuration Validation Use the built-in validation: ```python from databricks_mcp_server.utils import validate_databricks_config validation = validate_databricks_config() if not validation["valid"]: print("Configuration errors:", validation["errors"]) ``` ## Security Considerations - Never commit access tokens to version control - Use environment variables or secure configuration management - Limit token permissions to minimum required scope - Consider using service principals for production deployments ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests 5. Run the test suite 6. Submit a pull request ## License MIT License - see LICENSE file for details. ## Support For issues and questions: 1. Check the troubleshooting section 2. Search existing issues 3. Create a new issue with detailed information ## Changelog ### v0.1.0 - Initial release - Basic Unity Catalog integration - Table metadata and sampling - SQL query execution - MCP server implementation

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/knustx/databricks-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server