Skip to main content
Glama
knishioka

Treasure Data MCP Server

by knishioka

td_analyze_url

Extract and retrieve detailed information from Treasure Data console URLs shared in Slack, email, or documentation for workflows, projects, and jobs.

Instructions

Analyze any Treasure Data console URL to get resource details.

Smart URL parser that extracts IDs and fetches information. Use when someone shares a console link in Slack, email, or documentation. Common scenarios: - Someone shares workflow URL during incident investigation - Documentation contains console links to resources - Error message includes console URL reference - Quick lookup from browser URL copy/paste Supported formats: - Workflow: https://console.../app/workflows/12345678/info - Project: https://console.../app/projects/123456 - Job: https://console.../app/jobs/123456 Automatically detects type and returns full resource information.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
urlYes

Implementation Reference

  • The main asynchronous handler function for the 'td_analyze_url' tool. It parses input URLs for Treasure Data console resources (workflows, projects, jobs), extracts IDs using regex, and fetches details using client APIs or delegates to td_get_workflow for workflows.
    async def td_analyze_url(url: str) -> dict[str, Any]: """Analyze any Treasure Data console URL to get resource details. Smart URL parser that extracts IDs and fetches information. Use when someone shares a console link in Slack, email, or documentation. Common scenarios: - Someone shares workflow URL during incident investigation - Documentation contains console links to resources - Error message includes console URL reference - Quick lookup from browser URL copy/paste Supported formats: - Workflow: https://console.../app/workflows/12345678/info - Project: https://console.../app/projects/123456 - Job: https://console.../app/jobs/123456 Automatically detects type and returns full resource information. """ if not url or not url.strip(): return _format_error_response("URL cannot be empty") # Parse workflow URL workflow_match = re.search(r"/app/workflows/(\d+)", url) if workflow_match: workflow_id = workflow_match.group(1) return await td_get_workflow(workflow_id) # Parse project URL project_match = re.search(r"/app/projects/(\d+)", url) if project_match: project_id = project_match.group(1) client = _create_client(include_workflow=True) if isinstance(client, dict): return client try: project = client.get_project(project_id) if project: return {"type": "project", "project": project.model_dump()} else: return _format_error_response( f"Project with ID '{project_id}' not found" ) except Exception as e: return _format_error_response(f"Failed to get project: {str(e)}") # Parse job URL job_match = re.search(r"/app/jobs/(\d+)", url) if job_match: job_id = job_match.group(1) return { "type": "job", "job_id": job_id, "message": "Job information retrieval not yet implemented", } return _format_error_response( "Unrecognized URL format. Supported: /app/workflows/ID, /app/projects/ID" )
  • The registration function that sets up globals and applies the MCP tool decorator to td_analyze_url (and td_get_workflow), making it available as an MCP tool.
    def register_url_tools(mcp_instance, create_client_func, format_error_func): """Register URL tools with the provided MCP instance.""" global mcp, _create_client, _format_error_response mcp = mcp_instance _create_client = create_client_func _format_error_response = format_error_func # Register all tools mcp.tool()(td_analyze_url) mcp.tool()(td_get_workflow)
  • Invocation of the register_url_tools function during MCP server initialization, which triggers the tool registration for td_analyze_url.
    url_tools.register_url_tools(mcp, _create_client, _format_error_response)
  • Supporting helper function called by td_analyze_url for workflow-specific lookups, providing detailed workflow information including project, schedule, sessions, and console URL.
    async def td_get_workflow(workflow_id: str) -> dict[str, Any]: """Get workflow details using numeric ID - essential for console URLs. Direct workflow lookup when you have the ID. Handles large workflow IDs that exceed pagination limits. Returns project info and execution history. Common scenarios: - Extracting ID from console URL (../workflows/12345678/info) - Looking up workflow from error logs containing ID - Getting project context for a known workflow ID - Checking execution status by workflow ID Returns workflow name, project details, schedule, and recent runs. Includes console URL for quick browser access. """ if not workflow_id or not workflow_id.strip(): return _format_error_response("Workflow ID cannot be empty") # Validate workflow ID format if not re.match(r"^\d+$", workflow_id): return _format_error_response("Invalid workflow ID format. Must be numeric.") client = _create_client(include_workflow=True) if isinstance(client, dict): return client try: # First try the direct API endpoint workflow = client.get_workflow_by_id(workflow_id) if workflow: # Found the workflow via direct API result: dict[str, Any] = { "type": "workflow", "workflow": { "id": workflow.id, "name": workflow.name, "project": { "id": workflow.project.id, "name": workflow.project.name, }, "timezone": workflow.timezone, "scheduled": workflow.schedule is not None, }, } # Add schedule info if available if workflow.schedule: result["workflow"]["schedule"] = workflow.schedule # Add latest session info if available # Note: Direct API might not include session info if workflow.latest_sessions: latest_sessions = [] for session in workflow.latest_sessions[:5]: # Last 5 sessions latest_sessions.append( { "session_time": session.session_time, "status": session.last_attempt.status, "success": session.last_attempt.success, } ) result["workflow"]["latest_sessions"] = latest_sessions # Construct console URL result[ "console_url" ] = f"https://console.treasuredata.com/app/workflows/{workflow_id}/info" return result # If not found via direct API, fall back to searching through all workflows # This might be needed for workflows accessible via console API only workflows = client.get_workflows(count=1000, all_results=True) for workflow in workflows: if workflow.id == workflow_id: # Found the workflow result = { "type": "workflow", "workflow": { "id": workflow.id, "name": workflow.name, "project": { "id": workflow.project.id, "name": workflow.project.name, }, "timezone": workflow.timezone, "scheduled": workflow.schedule is not None, }, } # Add schedule info if available if workflow.schedule: result["workflow"]["schedule"] = workflow.schedule # Add latest session info if available if workflow.latest_sessions: latest_sessions = [] for session in workflow.latest_sessions[:5]: # Last 5 sessions latest_sessions.append( { "session_time": session.session_time, "status": session.last_attempt.status, "success": session.last_attempt.success, } ) result["workflow"]["latest_sessions"] = latest_sessions # Construct console URL result[ "console_url" ] = f"https://console.treasuredata.com/app/workflows/{workflow_id}/info" return result return _format_error_response(f"Workflow with ID '{workflow_id}' not found") except Exception as e: return _format_error_response(f"Failed to get workflow: {str(e)}")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/knishioka/td-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server