Skip to main content
Glama

IB Analytics MCP Server

by knishioka
Dockerfile•1.56 kB
# Multi-stage build for IB Analytics MCP Server # Based on Docker MCP Server best practices (2025) # Stage 1: Builder FROM python:3.12-slim AS builder WORKDIR /app # Install build dependencies RUN apt-get update && apt-get install -y --no-install-recommends \ gcc \ g++ \ && rm -rf /var/lib/apt/lists/* # Copy requirements COPY pyproject.toml ./ # Install dependencies to /install RUN pip install --no-cache-dir --prefix=/install . # Stage 2: Runtime FROM python:3.12-slim LABEL org.opencontainers.image.title="IB Analytics MCP Server" LABEL org.opencontainers.image.description="Interactive Brokers Portfolio Analytics with MCP" LABEL org.opencontainers.image.version="0.1.0" LABEL org.opencontainers.image.authors="Kenichiro Nishioka" LABEL org.opencontainers.image.licenses="MIT" WORKDIR /app # Copy installed packages from builder COPY --from=builder /install /usr/local # Copy application code COPY ib_sec_mcp ./ib_sec_mcp COPY pyproject.toml ./ # Install the package RUN pip install --no-cache-dir -e ".[mcp]" # Create data directories RUN mkdir -p data/raw data/processed && \ chmod 755 data # Security: Run as non-root user RUN useradd -m -u 1000 mcpuser && \ chown -R mcpuser:mcpuser /app USER mcpuser # Environment variables (override with docker run -e) ENV PYTHONUNBUFFERED=1 \ IB_DEBUG=0 # Health check (optional, for HTTP transport) # HEALTHCHECK --interval=30s --timeout=3s --start-period=5s --retries=3 \ # CMD python -c "import sys; sys.exit(0)" # Default command: run MCP server CMD ["ib-sec-mcp"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/knishioka/ib-sec-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server