Skip to main content
Glama

Dedalus MCP Documentation Server

by kitan23

Dedalus MCP Documentation Server

An MCP server for serving and querying documentation with AI capabilities. Built for the YC Agents Hackathon.

Quick Start (Local Development)

# Install uv package manager (same as Dedalus uses) brew install uv # or pip install uv # Install dependencies uv sync --no-dev # Configure API keys for AI features cp config/.env.example .env.local # Edit .env.local and add your OpenAI API key # Test uv run python tests/test_server.py # Run uv run main

Deploy to Dedalus

What Dedalus Needs

  • pyproject.toml - Package configuration with dependencies

  • main.py (root) - Entry point that Dedalus expects

  • src/main.py - The actual MCP server code

  • docs/ - Your documentation files

Deployment Steps

  1. Set Environment Variables in Dedalus UI:

    • OPENAI_API_KEY - Your OpenAI API key (required for AI features)

  2. Deploy:

dedalus deploy . --name "your-docs-server"

How Dedalus Runs Your Server

  1. Installs dependencies using uv sync from pyproject.toml

  2. Runs uv run main to start the server

  3. Server runs in /app directory in container

  4. Docs are served from /app/docs

Features

  • Serve markdown documentation

  • Search across docs

  • AI-powered Q&A (with OpenAI)

  • Rate limiting (10 requests/minute) to protect API keys

  • Ready for agent handoffs

Tools Available

  • list_docs() - List documentation files

  • search_docs() - Search with keywords

  • ask_docs() - AI answers from docs

  • index_docs() - Index documents

  • analyze_docs() - Analyze for tasks

Documentation

See docs/ directory for:

License

MIT

Deploy Server
A
security – no known vulnerabilities
-
license - not tested
A
quality - confirmed to work

Related MCP Servers

  • -
    security
    -
    license
    -
    quality
    Enables AI assistants to enhance their responses with relevant documentation through a semantic vector search, offering tools for managing and processing documentation efficiently.
    Last updated -
    22
    43
  • -
    security
    -
    license
    -
    quality
    Provides tools for retrieving and processing documentation through vector search, enabling AI assistants to augment their responses with relevant documentation context.
    Last updated -
    22
    MIT License
    • Apple
  • -
    security
    -
    license
    -
    quality
    An Agent Framework Documentation server that enables AI agents to efficiently retrieve information from documentation databases using hybrid semantic and keyword search for seamless agent integration.
    Last updated -
  • -
    security
    -
    license
    -
    quality
    Provides advanced document search and processing capabilities through vector stores, including PDF processing, semantic search, web search integration, and file operations. Enables users to create searchable document collections and retrieve relevant information using natural language queries.
    Last updated -
    MIT License
    • Linux
    • Apple

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kitan23/Python_MCP_Server_Example_2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server