Skip to main content
Glama
chatgpt-models-gemini-cli.mdโ€ข10.4 kB
# How to Use ChatGPT Models in Gemini CLI: A Complete Integration Guide Break free from Google's model limitations and access OpenAI's latest models directly within your familiar Gemini CLI workflow. ## Problem Statement Gemini CLI is a powerful development tool, but you're restricted to Google's Gemini models. What if you want to: - Use **GPT-4o's multimodal capabilities** for code analysis with screenshots - Access **GPT-5's superior reasoning** for complex architectural decisions - Compare **OpenAI vs Google models** side-by-side in the same interface - Leverage **OpenRouter's 400+ models** through Gemini CLI This guide shows you how to integrate any OpenAI-compatible API with Gemini CLI using MCP AI Gateway. ## Prerequisites - Gemini CLI installed and configured - OpenAI API key (or OpenRouter account) - Basic familiarity with MCP server configuration - Node.js 18+ for MCP AI Gateway ## Understanding Gemini CLI MCP Integration Gemini CLI uses a **reason and act (ReAct) loop** with built-in tools and MCP servers to complete complex tasks. The `/mcp` command lists configured servers and their available tools. Key capabilities: - **Rich content support**: Text, images, audio, binary data - **External system integration**: APIs, databases, file systems - **Multi-agent orchestration**: Complex workflows with tool chaining ## Step 1: Install and Configure MCP AI Gateway ### Quick Installation ```bash # Install globally for easy access npm install -g mcp-ai-gateway # Or use npx (recommended) npx mcp-ai-gateway --version ``` ### Create MCP Server Configuration Create a configuration file for Gemini CLI MCP integration: ```bash # Create MCP config directory mkdir -p ~/.config/gemini-cli/mcp ``` ### Configure for OpenAI Access Create `~/.config/gemini-cli/mcp/openai-gateway.json`: ```json { "mcpServers": { "openai-models": { "command": "npx", "args": ["mcp-ai-gateway"], "env": { "API_FORMAT": "openai", "API_KEY": "sk-your-openai-key-here", "API_ENDPOINT": "https://api.openai.com/v1", "DEFAULT_MODEL": "gpt-4o", "DEFAULT_TEMPERATURE": "0.7", "DESCRIPTION": "OpenAI Models via Gemini CLI:\n\n๐Ÿง  REASONING & CODE:\n- gpt-4o: Best multimodal model with vision, audio, and code\n- gpt-4-turbo: Fast and capable for most development tasks\n- gpt-3.5-turbo: Quick responses for simple queries\n\n๐ŸŽฏ USE CASES:\n- Code review with screenshot analysis\n- Architecture design and planning\n- Cross-platform development insights\n- Alternative perspectives to Gemini models\n\n๐Ÿ’ก INTEGRATION BENEFITS:\n- Compare OpenAI vs Gemini approaches\n- Leverage different model strengths\n- Redundancy when one service has issues" } } } } ``` ## Step 2: Configure Gemini CLI MCP Settings ### Update Gemini CLI Configuration Edit your Gemini CLI settings to include the MCP server: ```bash # Open Gemini CLI config gemini config edit ``` Add MCP server configuration: ```json { "mcp": { "servers": [ { "name": "openai-gateway", "command": ["npx", "mcp-ai-gateway"], "env": { "API_FORMAT": "openai", "API_KEY": "sk-your-openai-key-here", "API_ENDPOINT": "https://api.openai.com/v1", "DEFAULT_MODEL": "gpt-4o", "DESCRIPTION": "Access to OpenAI GPT models for comparison and specialized tasks" } } ] } } ``` ## Step 3: Verify Integration ### Check MCP Server Status ```bash # List configured MCP servers gemini /mcp # Expected output: # โœ“ openai-gateway - Connected # Tools: chat_completion # Status: Active # Models: gpt-4o, gpt-4-turbo, gpt-3.5-turbo ``` ### Test Basic Functionality ```bash gemini chat "Please use the OpenAI gateway to explain the difference between async/await and Promises, then use Gemini to provide a Google Cloud specific example" ``` ## Step 4: Advanced Multi-Model Workflows ### Comparative Analysis Workflow Create sophisticated workflows that leverage both Gemini and OpenAI models: ```bash gemini chat " I need to design a microservices architecture. Please: 1. Use the OpenAI gateway (GPT-4o) to provide general microservices best practices 2. Use Gemini to suggest Google Cloud specific services and patterns 3. Compare both approaches and recommend a hybrid solution " ``` ### Code Review with Multiple Perspectives ```bash gemini review my-code.py --use-mcp openai-gateway --compare-with gemini ``` ### Cross-Model Validation ```bash gemini chat " For this React component, please: 1. Use GPT-4o to identify potential performance issues 2. Use Gemini to suggest Google-specific optimizations (like Core Web Vitals) 3. Synthesize both recommendations into actionable improvements " ``` ## Step 5: OpenRouter Integration for 400+ Models ### Configure OpenRouter Access ```json { "mcpServers": { "openrouter-models": { "command": "npx", "args": ["mcp-ai-gateway"], "env": { "API_FORMAT": "openai", "API_KEY": "sk-or-your-openrouter-key", "API_ENDPOINT": "https://openrouter.ai/api/v1", "DEFAULT_MODEL": "anthropic/claude-3.5-sonnet", "DESCRIPTION": "400+ Models via OpenRouter:\n\n๐Ÿข ENTERPRISE:\n- anthropic/claude-3.5-sonnet: Best coding model\n- openai/gpt-4o: Multimodal capabilities\n- google/gemini-pro-1.5: Advanced reasoning\n\n๐Ÿ†“ FREE TIER:\n- google/gemini-flash-1.5: Fast free responses\n- meta-llama/llama-3.1-8b: Open source\n- microsoft/phi-3-mini: Efficient small model\n\n๐Ÿ’ฐ COST-EFFECTIVE:\n- Automatic fallbacks\n- Bulk pricing discounts\n- Free tier access" } } } } ``` ## Real-World Usage Examples ### Example 1: Full-Stack Development ```bash # Multi-model development workflow gemini chat " I'm building a Next.js app with Google Cloud backend. Please: 1. Use Claude 3.5 Sonnet (via OpenRouter) to review my React components for best practices 2. Use GPT-4o to suggest TypeScript improvements and type safety 3. Use Gemini to recommend Google Cloud services and deployment strategies 4. Synthesize all recommendations into a development roadmap " ``` ### Example 2: Technical Writing ```bash # Documentation with multiple perspectives gemini docs generate --topic "API Design" --use-models "gpt-4o,gemini-pro,claude-sonnet" ``` ### Example 3: Code Optimization ```bash gemini optimize performance.js --analyze-with openai-gateway --implement-with gemini --validate-with claude ``` ## Configuration Templates ### Template 1: Development Team Setup ```json { "mcpServers": { "ai-dev-tools": { "command": "npx", "args": ["mcp-ai-gateway"], "env": { "API_FORMAT": "openai", "API_KEY": "sk-or-team-key", "API_ENDPOINT": "https://openrouter.ai/api/v1", "DEFAULT_MODEL": "anthropic/claude-3.5-sonnet", "DESCRIPTION": "Team Development Models:\n- Code review: Claude 3.5 Sonnet\n- Architecture: GPT-4o\n- Quick queries: Gemini Flash (free)\n- Documentation: Gemini Pro" } } } } ``` ### Template 2: Cost-Optimized Setup ```json { "mcpServers": { "budget-ai": { "command": "npx", "args": ["mcp-ai-gateway"], "env": { "API_FORMAT": "openai", "API_KEY": "sk-or-budget-key", "API_ENDPOINT": "https://openrouter.ai/api/v1", "DEFAULT_MODEL": "google/gemini-flash-1.5", "DESCRIPTION": "Budget-Friendly AI:\n- Free tier: Gemini Flash, Llama 3.1\n- Low-cost: Claude Haiku, GPT-3.5\n- Premium only when needed: GPT-4o, Claude Sonnet" } } } } ``` ## Troubleshooting Common Issues ### 1. MCP Server Not Connecting ```bash # Check server status gemini /mcp status # Debug connection npx mcp-ai-gateway --test-connection # Verify environment variables echo $API_KEY | head -c 10 ``` ### 2. Model Not Found Errors ```bash # List available models curl -H "Authorization: Bearer $API_KEY" https://openrouter.ai/api/v1/models # Update configuration with correct model names "DEFAULT_MODEL": "openai/gpt-4o" # Correct OpenRouter format ``` ### 3. Authentication Issues ```bash # Test API key directly curl -H "Authorization: Bearer sk-..." https://api.openai.com/v1/models # Check key format OpenAI: sk-proj-... or sk-... OpenRouter: sk-or-v1-... Anthropic: sk-ant-... ``` ### 4. Performance Issues ```bash # Enable debug logging export DEBUG=mcp-ai-gateway:* gemini chat "test message" # Monitor token usage gemini usage --provider openai-gateway ``` ## Advanced Features ### Custom Model Routing Create intelligent model selection based on task type: ```json { "DESCRIPTION": "Smart Model Routing:\n\n๐Ÿ“ TEXT TASKS โ†’ GPT-4o\n๐Ÿ–ผ๏ธ VISION TASKS โ†’ GPT-4o or Claude 3.5 Sonnet\n๐Ÿ’ป CODE TASKS โ†’ Claude 3.5 Sonnet\nโšก QUICK TASKS โ†’ Gemini Flash (free)\n๐Ÿงฎ MATH/LOGIC โ†’ GPT-4o or Gemini Pro\n๐ŸŒ WEB/API โ†’ Gemini Pro (Google expertise)\n\nAI will automatically choose the best model for each task type." } ``` ### Multi-Provider Fallbacks ```json { "mcpServers": { "primary-ai": { "env": { "API_ENDPOINT": "https://api.openai.com/v1", "DESCRIPTION": "Primary: OpenAI GPT models" } }, "fallback-ai": { "env": { "API_ENDPOINT": "https://openrouter.ai/api/v1", "DESCRIPTION": "Backup: 400+ models via OpenRouter" } } } } ``` ## Performance Optimization ### 1. Caching Strategy ```bash # Enable response caching export MCP_CACHE_ENABLED=true export MCP_CACHE_TTL=3600 # 1 hour ``` ### 2. Concurrent Requests ```bash # Allow parallel model calls export MCP_MAX_CONCURRENT=5 ``` ### 3. Model-Specific Timeouts ```json { "env": { "DEFAULT_TIMEOUT": "60000", # 60 seconds "FAST_MODEL_TIMEOUT": "15000" # 15 seconds for quick models } } ``` ## Conclusion By integrating OpenAI models with Gemini CLI through MCP AI Gateway, you get: - **Best of both worlds**: Google Cloud expertise + OpenAI capabilities - **Cost optimization**: Smart model selection and OpenRouter discounts - **Workflow efficiency**: Seamless model switching within familiar tools - **Flexibility**: 400+ models available through unified interface This setup transforms Gemini CLI from a single-model tool into a universal AI development platform, giving you the flexibility to choose the right model for each specific task while maintaining your existing workflow and expertise.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kinhunt/mcp-ai-gateway'

If you have feedback or need assistance with the MCP directory API, please join our Discord server