Skip to main content
Glama

Multi-Agent Tools Platform

README.md1.6 kB
# Multi-Agent Tools Platform This project provides a modular, production-ready agentic system for advanced math, research, weather, and summarization tasks, using FastMCP, LangChain, and FastAPI. ## Features - **Five core tools**: Math, Search, Weather, Wikipedia, Summarizer (`tools_server.py`) - **Three specialized agents**: Research, Math, Meteo (`agents.py`) - **HTTP API endpoints**: FastAPI server exposes each agent (`api_servers.py`) - **Unified MCP toolbox**: Wraps APIs and provides a smart supervisor tool (`agent_tools.py`) ## Setup ### 1. Clone & Install ```bash cd C:/Users/kingr/CascadeProjects python -m venv venv venv\Scripts\activate pip install -r requirements.txt ``` ### 2. Environment Variables Create a `.env` file or set these in your shell: ``` AZURE_DEPLOYMENT=your-azure-deployment-name OPENAI_API_VERSION=2023-05-15 ``` ### 3. Run Components (in separate terminals) ```bash python tools_server.py python api_servers.py python agent_tools.py ``` - The FastAPI server runs on [http://127.0.0.1:8000](http://127.0.0.1:8000) - Use an MCP client to interact with the `supervisor` tool in `agent_tools.py` ## File Structure - `tools_server.py` – Five tools, FastMCP server - `agents.py` – Three ReAct agents, using LangChain and FastMCP - `api_servers.py` – FastAPI server, exposes each agent - `agent_tools.py` – MCP toolbox, API wrappers, supervisor - `requirements.txt` – All dependencies - `.env.example` – Example environment file ## Testing You can add tests using `pytest`. Example test files can be placed in a `tests/` directory. --- ## License MIT

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kingrishabdugar/MCP_Demo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server