Skip to main content
Glama
khushiiagrawal

MCP Research Server

MCP Research Assistant 🧠

A comprehensive Model Context Protocol (MCP) setup that provides powerful tools for research, file management, and web content fetching. This project integrates multiple MCP servers to enhance your AI assistant capabilities.

✨ Features

  • πŸ“š Research Tool: Search and manage academic papers from arXiv

  • πŸ“ Filesystem Tool: Browse, read, and manage project files

  • 🌐 Fetch Tool: Retrieve content from websites and APIs

  • πŸ€– Multi-LLM Support: Works with Claude, Gemini, and other AI models

  • πŸ’Ύ Local Storage: Automatically saves research data organized by topics

Related MCP server: arXiv MCP Server

πŸ› οΈ Prerequisites

  • Python 3.13 or higher

  • uv package manager (recommended) or pip

  • API keys for your chosen LLM providers

  • Claude Desktop (for MCP integration)

πŸ’» Quick Start

1. Clone and Setup

git clone <your-repo-url> cd mcp_project

2. Install Dependencies

# Install uv if you haven't already curl -LsSf https://astral.sh/uv/install.sh | sh # Create virtual environment and install dependencies uv sync

3. Configure Environment Variables

Create a .env file in your project root:

ANTHROPIC_API_KEY=your_anthropic_api_key_here

4. Configure Claude Desktop

Create or update your Claude Desktop configuration file:

Location: ~/Library/Application Support/Claude/claude_desktop_config.json (macOS)

{ "mcpServers": { "filesystem": { "command": "npx", "args": [ "-y", "@modelcontextprotocol/server-filesystem", "." ], "cwd": "/path/to/your/mcp_project" }, "research": { "command": "/path/to/your/mcp_project/.venv/bin/python", "args": [ "/path/to/your/mcp_project/research_server.py" ], "cwd": "/path/to/your/mcp_project" }, "fetch": { "command": "/path/to/your/.local/bin/uvx", "args": ["mcp-server-fetch"], "cwd": "/path/to/your/mcp_project" } } }

Important: Replace /path/to/your/mcp_project with your actual project path.

5. Restart Claude Desktop

Restart Claude Desktop completely to load the new configuration.

🎯 How to Use

Research Tool πŸ”¬

Search for Papers:

Search for 5 papers about machine learning

Get Paper Details:

Show me information about paper ID 1234.5678

Browse Saved Papers:

What papers do I have saved on physics?

Filesystem Tool πŸ“

Browse Files:

List all files in my project directory

Read Files:

Show me the contents of research_server.py

Create Files:

Create a new Python script for data analysis

Fetch Tool 🌐

Get Web Content:

Fetch the latest Python documentation

API Calls:

Get current weather data from an API

πŸ“‹ Available Tools

Research Server Tools

Tool

Description

Parameters

search_papers

Search arXiv for papers

topic, max_results

extract_info

Get paper details

paper_id

get_available_folders

List saved topics

None

Filesystem Server Tools

Tool

Description

read_file

Read file contents

write_file

Write to files

list_dir

List directory contents

delete_file

Delete files

Fetch Server Tools

Tool

Description

fetch

Fetch content from URLs

πŸ“ Project Structure

mcp_project/ β”œβ”€β”€ research_server.py # Main research MCP server β”œβ”€β”€ mcp_chatbot_L7.py # Chatbot with LLM integration β”œβ”€β”€ pyproject.toml # Project configuration β”œβ”€β”€ requirements.txt # Python dependencies β”œβ”€β”€ uv.lock # Dependency lock file β”œβ”€β”€ papers/ # Research data storage β”‚ └── [topic_name]/ # Organized by topic β”‚ └── papers_info.json # Paper metadata β”œβ”€β”€ .env # Environment variables └── README.md # This file

πŸ”§ Configuration Details

Research Server Configuration

The research server automatically:

  • Creates topic-based directories in papers/

  • Saves paper metadata as JSON files

  • Provides search and retrieval functions

  • Integrates with arXiv API

Filesystem Server Configuration

The filesystem server:

  • Operates within your project directory

  • Provides full file management capabilities

  • Uses relative paths for portability

Fetch Server Configuration

The fetch server:

  • Handles web requests and API calls

  • Supports custom user agents

  • Can ignore robots.txt restrictions

MCP Research Assistant Working

Screenshot showing the MCP Research Assistant successfully running with all tools working

πŸ“ Development

Adding New Tools

  1. Edit research_server.py to add new functions

  2. Use the @mcp.tool() decorator

  3. Test with MCP Inspector

  4. Update documentation

Customizing LLM Behavior

  1. Edit mcp_chatbot_L7.py

  2. Modify tool descriptions and parameters

  3. Add custom prompts and resources

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/khushiiagrawal/mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server