Skip to main content
Glama

CryptoSignal-MCP

README.md8.24 kB
<div align="center"> # 📈 CryptoSignal MCP [![Python](https://img.shields.io/badge/Python-3.11+-blue.svg)](https://python.org) [![MCP](https://img.shields.io/badge/MCP-Compatible-green.svg)](https://github.com/modelcontextprotocol) [![License](https://img.shields.io/badge/License-MIT-yellow.svg)](LICENSE) [![Binance](https://img.shields.io/badge/Data-Binance%20API-orange.svg)](https://binance.com) **AI-Powered Cryptocurrency Direction Prediction & Market Signal Analysis** *Powered by Machine Learning Ensemble Models with 30+ Technical Indicators* [Features](#-features) • [Installation](#-installation) • [API Tools](#-api-tools) • [Examples](#-usage-examples) • [Indicators](#-technical-indicators) </div> ## 🎬 Demo <div align="center"> <img src="demo.png" alt="CryptoSignal MCP Demo" width="500"> <p><em>CryptoSignal MCP in action - Real-time crypto direction predictions with confidence scores</em></p> </div> --- ## ✨ Features | Feature | Description | |---------|-------------| | 🧠 **Advanced ML Predictions** | Ensemble models (Random Forest + Gradient Boosting) with 30+ technical indicators | | 📊 **Comprehensive Technical Analysis** | RSI, MACD, Bollinger Bands, Stochastic, Williams %R, ATR, and more | | ⏰ **Multiple Timeframes** | Support for 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M | | 🔄 **Real-time Data** | Live market data from Binance API with intelligent rate limiting and caching | | 🎯 **Smart Filtering** | Automatically filters incomplete trading periods for accurate analysis | | 🔍 **WebSearch Integration** | Optimized search queries for Claude Code's WebSearch tool with sentiment analysis prompts | | 📊 **Polymarket Trader Analysis** | Monitor successful crypto traders' activities, positions, and trading patterns for behavioral insights | ## 🚀 Installation ### Prerequisites - **Python 3.11+** - **Required packages** (automatically installed) ### Quick Start ```bash # Clone the repository git clone https://github.com/khalilbalaree/CryptoSignal-MCP.git cd CryptoSignal-MCP # Install dependencies pip install -r requirements.txt # Run the server python crypto_predictor_server.py ``` ### 🔧 MCP Integration #### With Claude Desktop Add this server to your Claude Desktop configuration: **macOS:** `~/Library/Application Support/Claude/claude_desktop_config.json` **Windows:** `%APPDATA%/Claude/claude_desktop_config.json` ```json { "mcpServers": { "cryptosignal-mcp": { "command": "python", "args": ["/path/to/CryptoSignal-MCP/crypto_predictor_server.py"], "env": {} } } } ``` ## 🛠️ API Tools ### 🎯 `predict_crypto_direction` > **Advanced ML prediction using ensemble models to predict price direction** ```python predict_crypto_direction( symbol="BTCUSDT", # Trading pair interval="1h", # Time interval (default: 1h) training_periods=1000 # Training data size (default: 1000) ) ``` **Supported Intervals:** `1m` `3m` `5m` `15m` `30m` `1h` `2h` `4h` `6h` `8h` `12h` `1d` `3d` `1w` `1M` **Returns:** Prediction direction, confidence scores, model performance, market context, feature importance, risk assessment --- ### 📈 `analyze_crypto_indicators` > **Fast technical analysis without ML training - immediate market insights** ```python analyze_crypto_indicators( symbol="ETHUSDT", # Trading pair interval="1h", # Time interval (default: 1h) limit=100, # Data points (default: 100) short_period=5, # Short-term period (default: 5) medium_period=10, # Medium-term period (default: 10) long_period=20 # Long-term period (default: 20) ) ``` **Returns:** Moving averages, trends, momentum analysis, volatility metrics, support/resistance levels, trend signals --- ### 🔍 `get_crypto_news_search` > **Generate optimized search queries for Claude Code's WebSearch tool** ```python get_crypto_news_search( symbol="bitcoin" # Crypto symbol (default: bitcoin) ) ``` **Returns:** Structured search data including optimized queries, reliable domains, and analysis prompts for use with Claude Code's WebSearch tool --- ### 📊 `monitor_polymarket_trader` > **Analyze successful crypto traders' positions and patterns on Polymarket** ```python monitor_polymarket_trader( trader_address="0x1234567890abcdef1234567890abcdef12345678", # Ethereum wallet address limit=100 # Activities to fetch (default: 100) ) ``` **Returns:** Complete trading activity history including positions, bet sizes, outcomes, timing, and P&L performance across crypto prediction markets ## 💡 Usage Examples <details> <summary><b>🔰 Basic Predictions</b></summary> ```python # Get ML prediction for Bitcoin (1-hour timeframe) predict_crypto_direction("BTCUSDT", "1h", 1000) # Quick technical analysis for Ethereum (4-hour timeframe) analyze_crypto_indicators("ETHUSDT", "4h", 200) # Get search query for Bitcoin news analysis get_crypto_news_search("bitcoin") # Monitor successful crypto trader's activities monitor_polymarket_trader("0x1234567890abcdef1234567890abcdef12345678", 100) ``` </details> <details> <summary><b>⚡ Advanced Trading Scenarios</b></summary> ```python # Short-term scalping prediction (15-minute intervals) predict_crypto_direction("BTCUSDT", "15m", 500) # Long-term investment analysis (daily timeframe) analyze_crypto_indicators("ETHUSDT", "1d", 365, 10, 20, 50) # Custom altcoin analysis analyze_crypto_indicators("ADAUSDT", "2h", 100, 3, 7, 14) # Multi-timeframe analysis for timeframe in ["1h", "4h", "1d"]: analyze_crypto_indicators("BTCUSDT", timeframe) # Copy trading successful traders successful_traders = [ "0x1234567890abcdef1234567890abcdef12345678", "0xabcdef1234567890abcdef1234567890abcdef12" ] for trader in successful_traders: monitor_polymarket_trader(trader, 100) ``` </details> ## 📊 Technical Indicators Our ML models leverage **30+ advanced technical indicators** across multiple categories: <div align="center"> | Category | Indicators | |----------|------------| | **📈 Price & Momentum** | Price change, acceleration, velocity<br/>Momentum (3, 5, 10, 20 periods)<br/>Rate of change, Sharpe ratio | | **📉 Moving Averages** | Simple MA (5, 10, 20, 50)<br/>Exponential MA (5, 12, 26, 50)<br/>MA ratios and crossover signals | | **🎯 Oscillators** | RSI (7, 14 periods)<br/>Stochastic Oscillator (K%, D%)<br/>Williams %R | | **🔊 Volume Analysis** | Volume ratios and rate of change<br/>On-Balance Volume (OBV)<br/>Volume spikes and trends | | **📐 Volatility & Bands** | Bollinger Bands (width, position)<br/>Average True Range (ATR)<br/>Volatility regimes | | **🏗️ Market Structure** | Support/resistance levels<br/>Fractal patterns (local max/min)<br/>Trend strength and regime detection | </div> ## 🎯 Model Architecture ```mermaid graph TD A[Historical Data] --> B[Feature Engineering] B --> C[30+ Technical Indicators] C --> D[Data Preprocessing] D --> E[Ensemble Models] E --> F[Random Forest] E --> G[Gradient Boosting] E --> H[Extra Trees] F --> I[Voting Classifier] G --> I H --> I I --> J[Prediction + Confidence] ``` ## ⚠️ Risk Disclaimer > **🚨 IMPORTANT:** This tool is designed for **educational and research purposes only**. > > Cryptocurrency trading involves **significant financial risk**. Past performance does not guarantee future results. Always: > - Conduct your own research and analysis > - Implement proper risk management strategies > - Never invest more than you can afford to lose > - Consider seeking advice from qualified financial professionals ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. --- <div align="center"> **Built with ❤️ for the crypto community** [⭐ Star this repo](https://github.com/khalilbalaree/CryptoSignal-MCP) • [🐛 Report Issues](https://github.com/khalilbalaree/CryptoSignal-MCP/issues) • [💡 Request Features](https://github.com/khalilbalaree/CryptoSignal-MCP/discussions) </div>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/khalilbalaree/CryptoSignal-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server