README.md•8.24 kB
<div align="center">
# 📈 CryptoSignal MCP
[](https://python.org)
[](https://github.com/modelcontextprotocol)
[](LICENSE)
[](https://binance.com)
**AI-Powered Cryptocurrency Direction Prediction & Market Signal Analysis**
*Powered by Machine Learning Ensemble Models with 30+ Technical Indicators*
[Features](#-features) • [Installation](#-installation) • [API Tools](#-api-tools) • [Examples](#-usage-examples) • [Indicators](#-technical-indicators)
</div>
## 🎬 Demo
<div align="center">
<img src="demo.png" alt="CryptoSignal MCP Demo" width="500">
<p><em>CryptoSignal MCP in action - Real-time crypto direction predictions with confidence scores</em></p>
</div>
---
## ✨ Features
| Feature | Description |
|---------|-------------|
| 🧠 **Advanced ML Predictions** | Ensemble models (Random Forest + Gradient Boosting) with 30+ technical indicators |
| 📊 **Comprehensive Technical Analysis** | RSI, MACD, Bollinger Bands, Stochastic, Williams %R, ATR, and more |
| ⏰ **Multiple Timeframes** | Support for 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M |
| 🔄 **Real-time Data** | Live market data from Binance API with intelligent rate limiting and caching |
| 🎯 **Smart Filtering** | Automatically filters incomplete trading periods for accurate analysis |
| 🔍 **WebSearch Integration** | Optimized search queries for Claude Code's WebSearch tool with sentiment analysis prompts |
| 📊 **Polymarket Trader Analysis** | Monitor successful crypto traders' activities, positions, and trading patterns for behavioral insights |
## 🚀 Installation
### Prerequisites
- **Python 3.11+**
- **Required packages** (automatically installed)
### Quick Start
```bash
# Clone the repository
git clone https://github.com/khalilbalaree/CryptoSignal-MCP.git
cd CryptoSignal-MCP
# Install dependencies
pip install -r requirements.txt
# Run the server
python crypto_predictor_server.py
```
### 🔧 MCP Integration
#### With Claude Desktop
Add this server to your Claude Desktop configuration:
**macOS:** `~/Library/Application Support/Claude/claude_desktop_config.json`
**Windows:** `%APPDATA%/Claude/claude_desktop_config.json`
```json
{
"mcpServers": {
"cryptosignal-mcp": {
"command": "python",
"args": ["/path/to/CryptoSignal-MCP/crypto_predictor_server.py"],
"env": {}
}
}
}
```
## 🛠️ API Tools
### 🎯 `predict_crypto_direction`
> **Advanced ML prediction using ensemble models to predict price direction**
```python
predict_crypto_direction(
symbol="BTCUSDT", # Trading pair
interval="1h", # Time interval (default: 1h)
training_periods=1000 # Training data size (default: 1000)
)
```
**Supported Intervals:** `1m` `3m` `5m` `15m` `30m` `1h` `2h` `4h` `6h` `8h` `12h` `1d` `3d` `1w` `1M`
**Returns:** Prediction direction, confidence scores, model performance, market context, feature importance, risk assessment
---
### 📈 `analyze_crypto_indicators`
> **Fast technical analysis without ML training - immediate market insights**
```python
analyze_crypto_indicators(
symbol="ETHUSDT", # Trading pair
interval="1h", # Time interval (default: 1h)
limit=100, # Data points (default: 100)
short_period=5, # Short-term period (default: 5)
medium_period=10, # Medium-term period (default: 10)
long_period=20 # Long-term period (default: 20)
)
```
**Returns:** Moving averages, trends, momentum analysis, volatility metrics, support/resistance levels, trend signals
---
### 🔍 `get_crypto_news_search`
> **Generate optimized search queries for Claude Code's WebSearch tool**
```python
get_crypto_news_search(
symbol="bitcoin" # Crypto symbol (default: bitcoin)
)
```
**Returns:** Structured search data including optimized queries, reliable domains, and analysis prompts for use with Claude Code's WebSearch tool
---
### 📊 `monitor_polymarket_trader`
> **Analyze successful crypto traders' positions and patterns on Polymarket**
```python
monitor_polymarket_trader(
trader_address="0x1234567890abcdef1234567890abcdef12345678", # Ethereum wallet address
limit=100 # Activities to fetch (default: 100)
)
```
**Returns:** Complete trading activity history including positions, bet sizes, outcomes, timing, and P&L performance across crypto prediction markets
## 💡 Usage Examples
<details>
<summary><b>🔰 Basic Predictions</b></summary>
```python
# Get ML prediction for Bitcoin (1-hour timeframe)
predict_crypto_direction("BTCUSDT", "1h", 1000)
# Quick technical analysis for Ethereum (4-hour timeframe)
analyze_crypto_indicators("ETHUSDT", "4h", 200)
# Get search query for Bitcoin news analysis
get_crypto_news_search("bitcoin")
# Monitor successful crypto trader's activities
monitor_polymarket_trader("0x1234567890abcdef1234567890abcdef12345678", 100)
```
</details>
<details>
<summary><b>⚡ Advanced Trading Scenarios</b></summary>
```python
# Short-term scalping prediction (15-minute intervals)
predict_crypto_direction("BTCUSDT", "15m", 500)
# Long-term investment analysis (daily timeframe)
analyze_crypto_indicators("ETHUSDT", "1d", 365, 10, 20, 50)
# Custom altcoin analysis
analyze_crypto_indicators("ADAUSDT", "2h", 100, 3, 7, 14)
# Multi-timeframe analysis
for timeframe in ["1h", "4h", "1d"]:
analyze_crypto_indicators("BTCUSDT", timeframe)
# Copy trading successful traders
successful_traders = [
"0x1234567890abcdef1234567890abcdef12345678",
"0xabcdef1234567890abcdef1234567890abcdef12"
]
for trader in successful_traders:
monitor_polymarket_trader(trader, 100)
```
</details>
## 📊 Technical Indicators
Our ML models leverage **30+ advanced technical indicators** across multiple categories:
<div align="center">
| Category | Indicators |
|----------|------------|
| **📈 Price & Momentum** | Price change, acceleration, velocity<br/>Momentum (3, 5, 10, 20 periods)<br/>Rate of change, Sharpe ratio |
| **📉 Moving Averages** | Simple MA (5, 10, 20, 50)<br/>Exponential MA (5, 12, 26, 50)<br/>MA ratios and crossover signals |
| **🎯 Oscillators** | RSI (7, 14 periods)<br/>Stochastic Oscillator (K%, D%)<br/>Williams %R |
| **🔊 Volume Analysis** | Volume ratios and rate of change<br/>On-Balance Volume (OBV)<br/>Volume spikes and trends |
| **📐 Volatility & Bands** | Bollinger Bands (width, position)<br/>Average True Range (ATR)<br/>Volatility regimes |
| **🏗️ Market Structure** | Support/resistance levels<br/>Fractal patterns (local max/min)<br/>Trend strength and regime detection |
</div>
## 🎯 Model Architecture
```mermaid
graph TD
A[Historical Data] --> B[Feature Engineering]
B --> C[30+ Technical Indicators]
C --> D[Data Preprocessing]
D --> E[Ensemble Models]
E --> F[Random Forest]
E --> G[Gradient Boosting]
E --> H[Extra Trees]
F --> I[Voting Classifier]
G --> I
H --> I
I --> J[Prediction + Confidence]
```
## ⚠️ Risk Disclaimer
> **🚨 IMPORTANT:** This tool is designed for **educational and research purposes only**.
>
> Cryptocurrency trading involves **significant financial risk**. Past performance does not guarantee future results. Always:
> - Conduct your own research and analysis
> - Implement proper risk management strategies
> - Never invest more than you can afford to lose
> - Consider seeking advice from qualified financial professionals
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
---
<div align="center">
**Built with ❤️ for the crypto community**
[⭐ Star this repo](https://github.com/khalilbalaree/CryptoSignal-MCP) • [🐛 Report Issues](https://github.com/khalilbalaree/CryptoSignal-MCP/issues) • [💡 Request Features](https://github.com/khalilbalaree/CryptoSignal-MCP/discussions)
</div>