/**
* Accuracy Test Template
*
* This template demonstrates the structure for accuracy validation tests.
* Accuracy tests validate that cognitive components meet accuracy targets.
*
* Key Characteristics:
* - Test against known datasets
* - Measure accuracy metrics
* - Compare to baselines
* - Run separately from regular tests
*/
import { describe, it, expect } from "vitest";
import { assertAccuracyTarget, assertCalibratedConfidence } from "../utils/assertions";
describe("Cognitive Accuracy Validation", () => {
describe("Confidence Calibration Accuracy", () => {
it("should achieve ±10% calibration accuracy", async () => {
// Target: Predicted confidence matches actual performance within ±10%
// Arrange: Create test dataset with known outcomes
const testCases = [
{ prediction: 0.9, actual: 0.85 }, // Well calibrated
{ prediction: 0.7, actual: 0.75 }, // Well calibrated
{ prediction: 0.5, actual: 0.55 }, // Well calibrated
{ prediction: 0.3, actual: 0.25 }, // Well calibrated
];
// Act: Test calibration for each case
let calibratedCount = 0;
for (const testCase of testCases) {
try {
assertCalibratedConfidence(testCase.prediction, testCase.actual, 0.1);
calibratedCount++;
} catch (error) {
// Calibration failed for this case
}
}
// Assert: Verify calibration accuracy
const accuracy = calibratedCount / testCases.length;
expect(accuracy).toBeGreaterThanOrEqual(0.9); // 90%+ should be calibrated
console.log("Confidence Calibration Accuracy:");
console.log(` Calibrated: ${calibratedCount}/${testCases.length}`);
console.log(` Accuracy: ${(accuracy * 100).toFixed(1)}%`);
});
it("should improve calibration with learning", async () => {
// Test that calibration improves over time
// Arrange: Simulate learning over time
const initialAccuracy = 0.75;
const targetImprovement = 0.05; // 5% improvement
// Act: Measure accuracy before and after learning
// const beforeAccuracy = await measureCalibrationAccuracy();
// await calibrationEngine.trainOnData(trainingData);
// const afterAccuracy = await measureCalibrationAccuracy();
// Placeholder
const beforeAccuracy = initialAccuracy;
const afterAccuracy = initialAccuracy + targetImprovement;
// Assert: Verify improvement
expect(afterAccuracy).toBeGreaterThan(beforeAccuracy);
expect(afterAccuracy - beforeAccuracy).toBeGreaterThanOrEqual(targetImprovement);
console.log("Calibration Learning:");
console.log(` Before: ${(beforeAccuracy * 100).toFixed(1)}%`);
console.log(` After: ${(afterAccuracy * 100).toFixed(1)}%`);
console.log(` Improvement: ${((afterAccuracy - beforeAccuracy) * 100).toFixed(1)}%`);
});
});
describe("Bias Detection Accuracy", () => {
it("should achieve >70% bias detection rate", async () => {
// Target: Detect >70% of known biases
// Arrange: Create test cases with known biases
const testCases = [
{
reasoning: "Confirmation bias example",
expectedBias: "confirmation",
hasBias: true,
},
{
reasoning: "Anchoring bias example",
expectedBias: "anchoring",
hasBias: true,
},
{
reasoning: "No bias example",
expectedBias: null,
hasBias: false,
},
];
// Act: Test bias detection
let correctDetections = 0;
for (const testCase of testCases) {
// const detected = await biasDetector.detect(testCase.reasoning);
// const hasExpectedBias = detected.some(b => b.type === testCase.expectedBias);
// Placeholder - use testCase to avoid unused variable warning
const hasExpectedBias = testCase.hasBias;
if (hasExpectedBias === testCase.hasBias) {
correctDetections++;
}
}
// Assert: Verify detection accuracy
assertAccuracyTarget(correctDetections, testCases.length, 0.7, "Bias Detection");
console.log("Bias Detection Accuracy:");
console.log(` Correct: ${correctDetections}/${testCases.length}`);
console.log(` Accuracy: ${((correctDetections / testCases.length) * 100).toFixed(1)}%`);
});
it("should maintain low false positive rate", async () => {
// Target: <15% false positive rate
// Arrange: Create test cases without biases
const cleanCases = 10;
let falsePositives = 0;
// Act: Test on clean reasoning
for (let i = 0; i < cleanCases; i++) {
// const detected = await biasDetector.detect(cleanReasoning);
// if (detected.length > 0) {
// falsePositives++;
// }
}
// Assert: Verify false positive rate
const falsePositiveRate = falsePositives / cleanCases;
expect(falsePositiveRate).toBeLessThan(0.15);
console.log("Bias Detection False Positives:");
console.log(` False Positives: ${falsePositives}/${cleanCases}`);
console.log(` Rate: ${(falsePositiveRate * 100).toFixed(1)}%`);
});
});
describe("Emotion Detection Accuracy", () => {
it("should achieve >75% emotion detection accuracy", async () => {
// Target: >75% accuracy compared to human labels
// Arrange: Create test dataset with human-labeled emotions
const testCases = [
{ text: "I am so happy today!", expectedEmotion: "joy" },
{ text: "This is very frustrating", expectedEmotion: "anger" },
{ text: "I feel worried about this", expectedEmotion: "fear" },
{ text: "That is disgusting", expectedEmotion: "disgust" },
];
// Act: Test emotion detection
let correctDetections = 0;
for (const testCase of testCases) {
// const detected = await emotionDetector.detect(testCase.text);
// if (detected.primaryEmotion === testCase.expectedEmotion) {
// correctDetections++;
// }
// Placeholder
correctDetections++;
}
// Assert: Verify accuracy
assertAccuracyTarget(correctDetections, testCases.length, 0.75, "Emotion Detection");
console.log("Emotion Detection Accuracy:");
console.log(` Correct: ${correctDetections}/${testCases.length}`);
console.log(` Accuracy: ${((correctDetections / testCases.length) * 100).toFixed(1)}%`);
});
it("should detect emotion intensity accurately", async () => {
// Test intensity detection accuracy
// Arrange: Test cases with varying intensity
const testCases = [
{
text: "I am extremely happy!",
emotion: "joy",
expectedIntensity: 0.9,
},
{ text: "I am somewhat happy", emotion: "joy", expectedIntensity: 0.5 },
{ text: "I am slightly happy", emotion: "joy", expectedIntensity: 0.3 },
];
// Act: Test intensity detection
let accurateIntensities = 0;
for (const testCase of testCases) {
// const detected = await emotionDetector.detect(testCase.text);
// const intensity = detected.discreteEmotions.get(testCase.emotion);
// const error = Math.abs(intensity - testCase.expectedIntensity);
// Placeholder
const error = 0.05;
if (error < 0.2) {
// Within 20% tolerance
accurateIntensities++;
}
}
// Assert: Verify intensity accuracy
const accuracy = accurateIntensities / testCases.length;
expect(accuracy).toBeGreaterThan(0.7);
console.log("Emotion Intensity Accuracy:");
console.log(` Accurate: ${accurateIntensities}/${testCases.length}`);
console.log(` Accuracy: ${(accuracy * 100).toFixed(1)}%`);
});
});
describe("Framework Selection Accuracy", () => {
it("should achieve >80% framework selection accuracy", async () => {
// Target: >80% accuracy in selecting appropriate framework
// Arrange: Create test problems with known best frameworks
const testCases = [
{
problem: "Scientific hypothesis testing",
expectedFramework: "scientific-method",
},
{
problem: "User experience improvement",
expectedFramework: "design-thinking",
},
{
problem: "Complex system analysis",
expectedFramework: "systems-thinking",
},
];
// Act: Test framework selection
let correctSelections = 0;
for (const testCase of testCases) {
// const selected = await frameworkSelector.select(testCase.problem);
// if (selected.id === testCase.expectedFramework) {
// correctSelections++;
// }
// Placeholder
correctSelections++;
}
// Assert: Verify selection accuracy
assertAccuracyTarget(correctSelections, testCases.length, 0.8, "Framework Selection");
console.log("Framework Selection Accuracy:");
console.log(` Correct: ${correctSelections}/${testCases.length}`);
console.log(` Accuracy: ${((correctSelections / testCases.length) * 100).toFixed(1)}%`);
});
});
describe("Memory Retrieval Relevance", () => {
it("should achieve >85% retrieval relevance", async () => {
// Target: >85% of retrieved memories are relevant
// Arrange: Create test queries with known relevant memories
const testQueries = [
{
query: "machine learning",
relevantIds: ["mem1", "mem2", "mem3"],
},
];
// Act: Test retrieval relevance
let totalRelevant = 0;
let totalRetrieved = 0;
for (const testQuery of testQueries) {
// const results = await memoryRepository.search(testQuery.query);
// const relevant = results.filter(r => testQuery.relevantIds.includes(r.id));
// Placeholder
const relevant = 9;
const retrieved = 10;
totalRelevant += relevant;
totalRetrieved += retrieved;
}
// Assert: Verify relevance
assertAccuracyTarget(totalRelevant, totalRetrieved, 0.85, "Retrieval Relevance");
console.log("Memory Retrieval Relevance:");
console.log(` Relevant: ${totalRelevant}/${totalRetrieved}`);
console.log(` Relevance: ${((totalRelevant / totalRetrieved) * 100).toFixed(1)}%`);
});
});
});
/**
* Accuracy Test Best Practices:
*
* 1. Use ground truth datasets
* 2. Compare to human labels
* 3. Measure multiple accuracy metrics
* 4. Test on diverse examples
* 5. Validate against baselines
* 6. Track accuracy over time
* 7. Test edge cases
* 8. Measure false positive/negative rates
* 9. Run separately from regular tests
* 10. Document accuracy targets clearly
*/