Skip to main content
Glama

TasksMultiServer

Version 0.1.0-alpha - Multi-interface task management system with MCP Server, REST API, and React UI.

⚠️ ALPHA RELEASE WARNING

This is an alpha release and is under active development. The API and functionality may change significantly before the stable 1.0.0 release. Use in production at your own risk.

  • Breaking changes may occur between alpha versions

  • API endpoints and response formats may change

  • Database schema migrations may not be backwards compatible

  • Documentation may be incomplete or outdated

For stable releases, please wait for version 1.0.0 or later.

Overview

TasksMultiServer provides hierarchical task management through multiple interfaces, designed for both human users and AI agents. Store tasks in PostgreSQL or filesystem, access via MCP protocol, REST API, or web UI.

For developers: See CONTRIBUTING.md for development setup and contribution guidelines.

Features

  • Multi-interface access: MCP Server for AI agents, REST API for programmatic access, React UI for visual management

  • Pluggable storage: Choose between filesystem or PostgreSQL

  • Hierarchical organization: Projects → Task Lists → Tasks

  • Dependency management: DAG-based task dependencies with circular dependency detection

  • Template-based instructions: Generate agent-specific task instructions

  • Direct store access: No caching ensures consistency across multiple agents

  • Agent-friendly features: Automatic parameter preprocessing, enhanced error messages with visual indicators and examples

  • Tags and search: Organize tasks with tags, search and filter by multiple criteria (text, status, priority, tags, project)

  • Dependency analysis: Analyze critical paths, identify bottlenecks, visualize dependency graphs (ASCII, DOT, Mermaid)

  • Bulk operations: Efficiently create, update, delete, or tag multiple tasks in a single operation

  • Automatic blocking detection: Tasks automatically show why they're blocked with dependency information

  • Health monitoring: Built-in health check endpoint for monitoring system status

Three Ways to Access TasksMultiServer

TasksMultiServer provides three distinct interfaces for different use cases:

1. MCP Server (for AI Agents)

⚠️ NOT YET PUBLISHED: This project is not yet available on PyPI or uvx. To use it, you must clone the repository and build it locally.

Local build and installation:

# Clone the repository git clone https://github.com/YOUR_USERNAME/tasks-multiserver.git cd tasks-multiserver # Create and activate virtual environment python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate # Install in development mode pip install -e ".[dev]" # Run the MCP server python -m src.interfaces.mcp.server

Configure in your AI agent's MCP settings (e.g., .kiro/settings/mcp.json):

{ "mcpServers": { "tasks-multiserver": { "command": "python", "args": ["-m", "src.interfaces.mcp.server"], "cwd": "/path/to/tasks-multiserver", "env": { "DATA_STORE_TYPE": "filesystem", "FILESYSTEM_PATH": "/path/to/tasks", "MULTI_AGENT_ENVIRONMENT_BEHAVIOR": "false" } } } }

Once published, you'll be able to use:

uvx tasks-multiserver # or pip install tasks-multiserver

2. REST API + React UI (via Docker Compose)

Use Docker Compose to run both the REST API and web UI together.

docker-compose up

Access:

  • REST API: http://localhost:8000

  • React UI: http://localhost:3000

Configure via .env file (see Configuration section below).

Agent-Friendly Features

TasksMultiServer is designed to work seamlessly with AI agents, providing intelligent parameter handling and clear error feedback.

Automatic Parameter Preprocessing

The system automatically converts common input patterns to the correct types, reducing friction for AI agents:

  • String numbers → Numbers: "5"5, "3.14"3.14

  • JSON strings → Arrays: '["tag1", "tag2"]'["tag1", "tag2"]

  • Boolean strings → Booleans: "true", "yes", "1"True

This means agents don't need to worry about exact type formatting - the system handles it intelligently.

Enhanced Error Messages

When validation errors occur, the system provides:

  • Visual indicators (❌, 💡, 📝, 🔧) for quick scanning

  • Field names and specific problem descriptions

  • Actionable guidance on how to fix the error

  • Working examples of correct usage

  • Valid options for enum fields

Example error message:

❌ priority: Invalid value "urgent" 💡 Priority must be one of: CRITICAL, HIGH, MEDIUM, LOW, TRIVIAL 📝 Example: "priority": "HIGH"

Organize and find tasks efficiently with tags and powerful search capabilities.

Task Tags

Add tags to tasks for categorization and filtering:

  • Up to 10 tags per task

  • Support for unicode, emoji, numbers, hyphens, and underscores

  • Maximum 50 characters per tag

  • Automatic deduplication

MCP Example:

# Add tags to a task add_task_tags(task_id="...", tags=["frontend", "urgent", "🚀"]) # Remove tags remove_task_tags(task_id="...", tags=["urgent"])

REST API Example:

# Add tags POST /tasks/{id}/tags {"tags": ["frontend", "urgent", "🚀"]} # Remove tags DELETE /tasks/{id}/tags {"tags": ["urgent"]}

Search and filter tasks by multiple criteria in a single query:

  • Text search: Match against task titles and descriptions

  • Status filter: Filter by task status (NOT_STARTED, IN_PROGRESS, BLOCKED, COMPLETED)

  • Priority filter: Filter by priority level (CRITICAL, HIGH, MEDIUM, LOW, TRIVIAL)

  • Tag filter: Find tasks with specific tags

  • Project filter: Filter by project name

  • Pagination: Control result size with limit and offset

  • Sorting: Order by relevance, created_at, updated_at, or priority

MCP Example:

search_tasks( query="authentication", status=["IN_PROGRESS"], priority=["HIGH", "CRITICAL"], tags=["backend"], project_name="API Development", limit=20, sort_by="priority" )

REST API Example:

POST /search/tasks { "query": "authentication", "status": ["IN_PROGRESS"], "priority": ["HIGH", "CRITICAL"], "tags": ["backend"], "project_name": "API Development", "limit": 20, "sort_by": "priority" }

Dependency Analysis and Visualization

Understand project structure and identify critical paths with powerful dependency analysis tools.

Dependency Analysis

Analyze task dependencies to gain insights:

  • Critical path: Identify the longest chain of dependent tasks

  • Bottlenecks: Find tasks that block multiple other tasks

  • Leaf tasks: Identify tasks with no dependencies (ready to start)

  • Progress tracking: Calculate completion percentage across the dependency graph

  • Circular dependency detection: Automatically detect and report cycles

MCP Example:

analyze_dependencies(scope_type="project", scope_id="...")

REST API Example:

GET /projects/{id}/dependencies/analysis GET /task-lists/{id}/dependencies/analysis

Response:

{ "critical_path": ["task-id-1", "task-id-2", "task-id-3"], "critical_path_length": 3, "bottleneck_tasks": [["task-id-2", 5]], "leaf_tasks": ["task-id-1", "task-id-4"], "completion_progress": 45.5, "total_tasks": 10, "completed_tasks": 4, "circular_dependencies": [] }

Dependency Visualization

Visualize dependency graphs in multiple formats:

  • ASCII: Tree-like structure with box-drawing characters (for terminal display)

  • DOT: Graphviz format (for rendering with Graphviz tools)

  • Mermaid: Mermaid diagram syntax (for documentation and web display)

MCP Example:

# ASCII visualization visualize_dependencies(scope_type="project", scope_id="...", format="ascii") # DOT format for Graphviz visualize_dependencies(scope_type="project", scope_id="...", format="dot") # Mermaid diagram visualize_dependencies(scope_type="project", scope_id="...", format="mermaid")

REST API Example:

GET /projects/{id}/dependencies/visualize?format=ascii GET /projects/{id}/dependencies/visualize?format=dot GET /projects/{id}/dependencies/visualize?format=mermaid

Automatic Blocking Detection

Tasks automatically include blocking information when they have incomplete dependencies:

{ "id": "task-123", "title": "Deploy to production", "status": "BLOCKED", "block_reason": { "is_blocked": true, "blocking_task_ids": ["task-100", "task-101"], "blocking_task_titles": ["Run integration tests", "Security audit"], "message": "Blocked by 2 incomplete dependencies: Run integration tests, Security audit" } }

This eliminates the need for additional queries to understand why a task can't proceed.

Bulk Operations

Efficiently manage multiple tasks at once with bulk operations (REST API only).

Supported Operations

  • Bulk create: Create multiple tasks in one request

  • Bulk update: Update multiple tasks in one request

  • Bulk delete: Delete multiple tasks in one request

  • Bulk tag operations: Add or remove tags from multiple tasks

Features

  • Validation before apply: All inputs are validated before any changes are made

  • Partial failure reporting: Detailed results show which operations succeeded and which failed

  • Transaction support: PostgreSQL operations use transactions; filesystem operations support rollback

Examples:

# Bulk create tasks POST /tasks/bulk/create { "tasks": [ {"task_list_id": "...", "title": "Task 1", "description": "...", ...}, {"task_list_id": "...", "title": "Task 2", "description": "...", ...} ] } # Bulk update tasks PUT /tasks/bulk/update { "updates": [ {"id": "task-1", "status": "COMPLETED"}, {"id": "task-2", "priority": "HIGH"} ] } # Bulk delete tasks DELETE /tasks/bulk/delete { "task_ids": ["task-1", "task-2", "task-3"] } # Bulk add tags POST /tasks/bulk/tags/add { "task_ids": ["task-1", "task-2"], "tags": ["urgent", "frontend"] } # Bulk remove tags POST /tasks/bulk/tags/remove { "task_ids": ["task-1", "task-2"], "tags": ["urgent"] }

Response format:

{ "total": 3, "succeeded": 2, "failed": 1, "results": [ { "index": 0, "success": true, "task_id": "task-1" }, { "index": 1, "success": true, "task_id": "task-2" }, { "index": 2, "success": false, "error": "Task not found" } ], "errors": [{ "index": 2, "error": "Task not found" }] }

Test Data Generator

TasksMultiServer includes a test data generator that creates realistic, comprehensive test data for development, testing, and demonstration purposes.

Features

  • Database reset: Automatically resets Docker database to clean state

  • Realistic data: Creates 15 projects, 35 task lists, and hundreds of tasks with varied metadata

  • Dependency graphs: Generates task dependencies ensuring no circular references

  • Status distribution: Creates tasks in different states (NOT_STARTED, IN_PROGRESS, COMPLETED)

  • Rich metadata: Adds tags, priorities, notes, action plans, and exit criteria

  • Reproducible: Uses configurable random seed for consistent results

  • Validated: Automatically validates generated data against 22 correctness properties

Usage

Prerequisites:

  • Docker and Docker Compose installed and running

  • REST API accessible (default: http://localhost:8000)

Basic usage:

# Generate with default settings (seed=42) python scripts/generate_test_data.py # Generate with custom seed for different data python scripts/generate_test_data.py --seed 123 # Generate with custom API URL python scripts/generate_test_data.py --api-url http://localhost:9000

What it generates:

  • 15 projects with varying numbers of task lists (0-10 per project)

  • 35 task lists with 0-25 tasks each

  • Tasks with realistic titles, descriptions, and exit criteria

  • Task dependencies forming valid DAGs (no circular dependencies)

  • Mixed task statuses respecting dependency constraints

  • Tags (1-5 per task) from a realistic pool

  • All 5 priority levels (CRITICAL, HIGH, MEDIUM, LOW, TRIVIAL)

  • Notes (research, execution, general) based on task status

  • Action plans (70% of tasks) with 3-8 sequential items

Example output:

Test Data Generator for TasksMultiServer ================================================== Random seed: 42 API URL: http://localhost:8000 Phase 1: Resetting database... ✓ Database reset complete Phase 2: Creating entities... ✓ Created 15 projects, 35 task lists, 247 tasks Phase 3: Assigning dependencies... ✓ Dependencies assigned Phase 4: Assigning statuses... ✓ Statuses assigned Phase 5: Enriching metadata... ✓ Metadata enriched Phase 6: Validating data... ====================================================================== Data Validation Report ====================================================================== Status: PASSED Properties Passed: 22/22 Properties Failed: 0/22 Summary: Total Projects: 15 Total Task Lists: 35 Total Tasks: 247 No violations found! ====================================================================== ✓ Data generation completed successfully!

When to use

  • Development: Populate your local database with realistic test data

  • Testing: Create consistent test scenarios with reproducible seeds

  • Demos: Generate impressive sample data for demonstrations

  • CI/CD: Validate system behavior with comprehensive test data

Notes

  • The generator requires Docker Compose to be running

  • It will completely reset the database, deleting all existing data

  • Use different seeds to generate varied data sets

  • All generated data is validated against the specification

Configuration

TasksMultiServer supports two backing stores and multi-agent coordination settings.

Environment Variables

Create a .env file or set these environment variables:

# Storage Backend (required) DATA_STORE_TYPE=filesystem # Options: "filesystem" or "postgresql" # Filesystem Configuration (when DATA_STORE_TYPE=filesystem) FILESYSTEM_PATH=/path/to/tasks # Default: /tmp/tasks # PostgreSQL Configuration (when DATA_STORE_TYPE=postgresql) POSTGRES_URL=postgresql://user:password@localhost:5432/dbname # Multi-Agent Coordination (optional) MULTI_AGENT_ENVIRONMENT_BEHAVIOR=false # Options: "true" or "false"

Storage Backend Options

Filesystem (Default)

  • Simple file-based storage

  • No database setup required

  • Good for single-user or development use

  • Configure with FILESYSTEM_PATH

export DATA_STORE_TYPE=filesystem export FILESYSTEM_PATH=/home/user/tasks

PostgreSQL

  • Robust database storage

  • Better for multi-user or production use

  • Requires PostgreSQL 14+

  • Configure with POSTGRES_URL

export DATA_STORE_TYPE=postgresql export POSTGRES_URL=postgresql://user:pass@localhost:5432/tasks

Multi-Agent Environment Behavior

Controls how tasks appear in "ready tasks" queries when multiple agents work concurrently:

  • false: Both NOT_STARTED and IN_PROGRESS tasks are ready

    • Allows agents to resume interrupted work

    • Good for single-agent or sequential workflows

  • true: Only NOT_STARTED tasks are ready

    • Prevents multiple agents from working on the same task

    • Good for concurrent multi-agent environments

export MULTI_AGENT_ENVIRONMENT_BEHAVIOR=true

Docker Compose Configuration

For Docker deployments, create a .env file in the project root:

# .env file for docker-compose DATA_STORE_TYPE=postgresql POSTGRES_URL=postgresql://postgres:postgres@db:5432/tasks MULTI_AGENT_ENVIRONMENT_BEHAVIOR=false

The docker-compose.yml automatically includes a PostgreSQL container when needed.

Usage Examples

MCP Server with Filesystem

{ "mcpServers": { "tasks-multiserver": { "command": "python", "args": ["-m", "src.interfaces.mcp.server"], "cwd": "/path/to/tasks-multiserver", "env": { "DATA_STORE_TYPE": "filesystem", "FILESYSTEM_PATH": "/home/user/.tasks" } } } }

MCP Server with PostgreSQL

{ "mcpServers": { "tasks-multiserver": { "command": "python", "args": ["-m", "src.interfaces.mcp.server"], "cwd": "/path/to/tasks-multiserver", "env": { "DATA_STORE_TYPE": "postgresql", "POSTGRES_URL": "postgresql://user:pass@localhost:5432/tasks", "MULTI_AGENT_ENVIRONMENT_BEHAVIOR": "true" } } } }

Docker Compose with PostgreSQL

Create .env:

DATA_STORE_TYPE=postgresql POSTGRES_URL=postgresql://postgres:postgres@db:5432/tasks

Run:

docker-compose up

Contributing

We welcome contributions! Please see CONTRIBUTING.md for:

  • Development environment setup

  • Coding standards and guidelines

  • Testing requirements

  • Pull request process

  • Quality standards

Documentation

Getting Started

Guides

API Reference

Examples

Architecture

For a complete documentation index, see docs/README.md.

Architecture

Layered architecture following data flow:

Interfaces (MCP/REST/UI) ↓ Orchestration (Business Logic) ↓ Data Delegation (Abstract Interface) ↓ Data Access (PostgreSQL/Filesystem) ↓ Storage (Database/Files)

License

MIT

  • GitHub: https://github.com/YOUR_USERNAME/tasks-multiserver

  • Issues: https://github.com/YOUR_USERNAME/tasks-multiserver/issues

Note: PyPI package will be available after the first stable release.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/keyurgolani/TasksMultiServer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server