Skip to main content
Glama

Adobe Commerce Support MCP Server

by kavingas
README.md2.39 kB
# Adobe Commerce Support MCP Server This MCP server helps generate professional Adobe Commerce support responses from case findings. ## Installation 1. **Dependencies are already installed** ✅ 2. **Server is ready to use** ✅ ## Usage with Cursor To use this MCP server with Cursor, add the following configuration to your Cursor settings: ### Option 1: Add to Cursor Settings (Recommended) 1. Open Cursor Settings (Cmd+,) 2. Search for "MCP" 3. Add this server configuration: ```json { "mcpServers": { "adobe-support-mcp": { "command": "python3", "args": ["/Users/kavingas/VSCodeProjects/mcp_support_server/mcp_support_server.py"], "env": {} } } } ``` ### Option 2: Use the provided config file The `mcp_config.json` file in this directory contains the ready-to-use configuration. ## How to Use ### Option 1: Structured Content (Traditional) 1. Create a `find.md` file with properly structured content: ```markdown ### Findings [Your investigation findings here] ### Analysis [Your technical analysis here] ### Recommendations [Your recommended solutions here] ``` 2. Use the `generate_support_reply` tool to create a professional customer response. ### Option 2: Mixed Content (New - LLM Assisted) 1. Create a `find.md` file with mixed/unstructured content (any format) 2. Use either: - `categorize_mixed_content` tool first, then use LLM to process the categorization prompt - `generate_support_reply` with `auto_categorize=true` (default) for automatic handling The server will automatically detect if your content needs categorization and provide LLM prompts to organize it properly. ## Tools Available - **generate_support_reply**: Generates a professional Adobe Commerce support response from case findings - `find_file`: Input file (default: "find.md") - `resp_file`: Output file (default: "resp.md") - `auto_categorize`: Automatically handle mixed content (default: true) - **categorize_mixed_content**: Creates LLM prompts to categorize mixed content into structured format - `find_file`: Input file with mixed content (default: "find.md") - `categorized_file`: Output file with categorization prompt (default: "categorized.md") ## Files - `mcp_support_server.py` - Main MCP server - `requirements.txt` - Python dependencies - `mcp_config.json` - Cursor configuration - `setup.py` - Installation script

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kavingas/mcp_support_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server