Skip to main content
Glama

Gergy AI - MCP Architecture Foundation

Gergy AI is an intelligent assistant powered by Model Context Protocol (MCP) architecture, designed to provide cross-domain intelligence across five key life areas: Financial, Family, Lifestyle, Professional, and Home management.

๐Ÿ—๏ธ Architecture Overview

This foundational implementation provides the shared infrastructure that all five MCP servers will build upon:

Shared Infrastructure

  • Database Layer: PostgreSQL with JSONB for flexible schema and cross-domain knowledge storage

  • Caching Layer: Redis for high-performance caching with cross-domain relevance

  • Pattern Recognition: Intelligent cross-domain pattern detection and suggestions

  • Cost Management: Distributed API budget tracking and optimization

  • Base MCP Framework: Foundation class for all domain servers

Domain Servers

  1. Financial Server - Budget management, expense tracking, investment insights

  2. Family Server - Event planning, relationship management, family coordination

  3. Lifestyle Server - Health, fitness, personal development, leisure activities

  4. Professional Server - Career development, skill tracking, professional networking

  5. Home Server - Home maintenance, improvement projects, household management

Related MCP server: Home Assistant MCP Server

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.10+ (tested with 3.10.12)

  • Docker and Docker Compose

  • PostgreSQL client tools (optional for manual access)

  • Redis client tools (optional for manual access)

Note: PostgreSQL and Redis will run in Docker containers, so you don't need them installed locally.

Installation

  1. Clone and setup:

git clone <repository-url> gergy-mcp cd gergy-mcp
  1. Environment configuration:

cp .env.example .env # Edit .env with your specific configuration
  1. Start the infrastructure:

docker-compose up -d postgres redis
  1. Install dependencies:

pip install -r requirements.txt
  1. Initialize database:

python -c " from shared.models.database import DatabaseConfig import os config = DatabaseConfig(os.getenv('DATABASE_URL')) config.create_tables() print('Database initialized successfully') "

๐Ÿ“ Project Structure

gergy-mcp/ โ”œโ”€โ”€ shared/ # Shared infrastructure โ”‚ โ”œโ”€โ”€ models/ # Database models โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ”‚ โ””โ”€โ”€ database.py # PostgreSQL models with JSONB โ”‚ โ”œโ”€โ”€ services/ # Core services โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ”‚ โ”œโ”€โ”€ database_service.py # Unified knowledge access โ”‚ โ”‚ โ”œโ”€โ”€ pattern_recognition_service.py # Cross-domain intelligence โ”‚ โ”‚ โ”œโ”€โ”€ cost_tracking_service.py # API budget management โ”‚ โ”‚ โ””โ”€โ”€ cache_service.py # Redis caching with relevance โ”‚ โ”œโ”€โ”€ utils/ # Utilities โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ”‚ โ””โ”€โ”€ config.py # Configuration management โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ””โ”€โ”€ base_mcp_server.py # Base server framework โ”œโ”€โ”€ servers/ # Domain-specific servers โ”‚ โ”œโ”€โ”€ financial/ # Financial management server โ”‚ โ”œโ”€โ”€ family/ # Family coordination server โ”‚ โ”œโ”€โ”€ lifestyle/ # Lifestyle management server โ”‚ โ”œโ”€โ”€ professional/ # Professional development server โ”‚ โ””โ”€โ”€ home/ # Home management server โ”œโ”€โ”€ docker-compose.yml # Infrastructure orchestration โ”œโ”€โ”€ requirements.txt # Python dependencies โ”œโ”€โ”€ .env.example # Environment configuration template โ””โ”€โ”€ README.md # This file

๐Ÿ› ๏ธ Key Features

Cross-Domain Intelligence

  • Pattern Recognition: Automatically detects patterns across domains (e.g., financial decisions affecting family plans)

  • Knowledge Sharing: Unified knowledge base accessible across all servers

  • Context Awareness: Maintains conversation context and suggests relevant cross-domain insights

Performance & Cost Optimization

  • Smart Caching: Redis-based caching with cross-domain relevance scoring

  • Cost Tracking: Real-time API usage monitoring with budget alerts

  • Pattern-Based Suggestions: Reduces API calls through intelligent pattern matching

Scalable Architecture

  • Modular Design: Each domain server inherits from BaseMCPServer

  • Database Flexibility: JSONB fields allow schema evolution without migrations

  • Containerized Deployment: Docker Compose for easy scaling and deployment

๐Ÿ“Š Database Schema

Core Tables

  • knowledge_items: Cross-domain knowledge with flexible JSONB metadata

  • user_sessions: Conversation tracking and context accumulation

  • temporal_cache: Expiration management and cross-module relevance

  • cross_domain_patterns: Pattern recognition system

  • api_usage_analytics: Cost tracking per server

Example Usage

from shared.services.database_service import DatabaseService from shared.services.pattern_recognition_service import PatternRecognitionService # Initialize services db_service = DatabaseService("postgresql://...") pattern_service = PatternRecognitionService(db_service) # Store knowledge across domains await db_service.store_knowledge( domain="financial", title="Budget Planning", content="Monthly budget analysis...", metadata={"category": "planning", "priority": "high"}, keywords=["budget", "planning", "monthly"] ) # Detect cross-domain patterns patterns = await pattern_service.analyze_conversation( content="Planning a family vacation", domain="family", session_id="user_123" )

๐Ÿ”ง Configuration

Environment Variables

Key configuration options in .env:

# Database DATABASE_URL=postgresql://username:password@localhost:5432/gergy_knowledge # Redis REDIS_URL=redis://localhost:6379 # Budget limits per server (USD/day) FINANCIAL_BUDGET_LIMIT=15.0 FAMILY_BUDGET_LIMIT=10.0 LIFESTYLE_BUDGET_LIMIT=8.0 PROFESSIONAL_BUDGET_LIMIT=12.0 HOME_BUDGET_LIMIT=8.0

Server Configuration

Each domain server can be configured independently:

from shared.utils.config import load_config config = load_config("config.yml") # Optional config file financial_config = config.servers["financial"]

๐Ÿ” Monitoring & Analytics

Built-in Metrics

  • Request/response tracking per server

  • Cost analysis and budget alerts

  • Pattern detection effectiveness

  • Cache hit/miss ratios

  • Cross-domain suggestion accuracy

Optional Monitoring Stack

  • Grafana: Dashboards for visual monitoring

  • Prometheus: Metrics collection and alerting

  • Database Analytics: Cross-domain usage patterns

๐Ÿงช Testing

# Run all tests pytest # Run with coverage pytest --cov=shared # Run specific test modules pytest tests/test_database_service.py pytest tests/test_pattern_recognition.py

๐Ÿ“ˆ Next Steps

This foundation enables:

  1. Domain Server Implementation: Each server will inherit from BaseMCPServer

  2. Tool Registration: Domain-specific tools for Claude.ai integration

  3. Pattern Learning: Machine learning models for better pattern recognition

  4. API Integration: External service connections with cost tracking

  5. Advanced Analytics: Cross-domain insights and optimization

๐Ÿค Contributing

  1. Follow the established patterns in BaseMCPServer

  2. Ensure all new features include tests

  3. Update documentation for new configurations

  4. Maintain cross-domain compatibility

๐Ÿ“ License

[Your chosen license]


Status: Foundation Complete โœ… Next Phase: Domain Server Implementation Target: Full MCP integration with Claude.ai

-
security - not tested
-
license - not tested
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/k4nuck/gergy-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server