Spiral MCP Server
by jxnl
Verified
# Spiral MCP Server
This is a Model Context Protocol (MCP) server implementation for the Spiral API using Python. It provides a standardized interface for interacting with Spiral's language models.
## Installation
```bash
mcp install src/server.py --name "spiral-writing-tool" --with pydantic --with requests --with beautifulsoup4 --with httpx
```
## Setup
1. Create and activate a virtual environment:
```bash
python3 -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
```
2. Install dependencies:
```bash
uv pip install -r requirements.txt
```
3. Create a `.env` file in the root directory and add your Spiral API key:
```bash
SPIRAL_API_KEY=your_api_key_here
```
You can get your API key from https://app.spiral.computer/api
## Running the Server
Start the server:
```bash
python src/server.py
```
The server will run on port 3000 by default. You can change this by setting the `PORT` environment variable.
## Testing the Tools
To test the MCP tools directly:
```bash
python src/test_tools.py
```
This will run tests for all available tools to verify their functionality.
## MCP Tools
The server implements four powerful MCP tools:
### list_models
Lists all available Spiral models with their capabilities and metadata.
Example response:
```python
{
"models": [
{
"id": "model-id",
"name": "model-name",
"description": "Model description",
"input_format": "text",
"output_format": "text",
"capabilities": {
"completion": true
}
}
]
}
```
### generate
Generates text using a specified Spiral model.
Parameters:
- `model`: The ID or slug of the Spiral model to use
- `prompt`: The input text to generate from
Example:
```python
{
"model": "model_id_or_slug",
"prompt": "Your input text here"
}
```
### generate_from_file
Generates text using a Spiral model with input from a file. This is useful for processing larger documents or maintaining consistent formatting.
Parameters:
- `model`: The ID or slug of the Spiral model to use
- `file_path`: Path to the file to use as input
Example:
```python
{
"model": "model_id_or_slug",
"file_path": "path/to/your/input.txt"
}
```
### generate_from_url
Generates text using a Spiral model with input from a URL. This tool can automatically extract article content from web pages.
Parameters:
- `model`: The ID or slug of the Spiral model to use
- `url`: URL to fetch content from
- `extract_article`: Whether to extract article content or use full HTML (default: true)
Example:
```python
{
"model": "model_id_or_slug",
"url": "https://example.com/article",
"extract_article": true
}
```
## Error Handling
The server handles various error cases including:
- Invalid API key
- Model not found
- Input too long
- Rate limit exceeded
- URL fetch failures
- File read errors
- Server errors
- Request timeouts
Each error returns a clear error message to help diagnose the issue.
## Environment Variables
- `SPIRAL_API_KEY`: Your Spiral API key (required)
- `PORT`: Server port (optional, defaults to 3000)
- `TIMEOUT`: Request timeout in seconds (optional, defaults to 30)
## Features
- **Robust Error Handling**: Comprehensive error handling and logging for all operations
- **Article Extraction**: Smart extraction of article content from web pages
- **Flexible Input Sources**: Support for text, files, and URLs as input
- **Async Operations**: All operations are asynchronous for better performance
- **Type Safety**: Full Pydantic type validation for all parameters
- **Logging**: Detailed debug logging for troubleshooting