Skip to main content
Glama

Stock Analysis MCP Server

install.sh1.68 kB
#!/bin/bash # 股票分析MCP工具安装脚本 echo "=== 股票分析MCP工具安装脚本 ===" echo "正在安装依赖包..." # 检查Python版本 python_version=$(python3 --version 2>&1 | grep -o '[0-9]\+\.[0-9]\+') echo "检测到Python版本: $python_version" if [[ $(echo "$python_version >= 3.8" | bc -l) -eq 0 ]]; then echo "错误: 需要Python 3.8或更高版本" exit 1 fi # 创建虚拟环境(可选) read -p "是否创建虚拟环境? (y/n): " create_venv if [[ $create_venv == "y" || $create_venv == "Y" ]]; then echo "创建虚拟环境..." python3 -m venv stock_mcp_env source stock_mcp_env/bin/activate echo "虚拟环境已激活" fi # 升级pip echo "升级pip..." pip install --upgrade pip # 安装依赖包 echo "安装依赖包..." pip install -r requirements.txt # 检查安装结果 echo "检查安装结果..." python3 -c " import fastmcp import akshare import pandas import numpy print('所有依赖包安装成功!') print(f'fastmcp版本: {fastmcp.__version__}') print(f'akshare版本: {akshare.__version__}') print(f'pandas版本: {pandas.__version__}') " # 运行测试 read -p "是否运行功能测试? (y/n): " run_test if [[ $run_test == "y" || $run_test == "Y" ]]; then echo "运行功能测试..." python3 test_tools.py fi echo "=== 安装完成 ===" echo "使用方法:" echo "1. 启动服务器: python3 start_server.py" echo "2. 在CherryStudio中配置MCP服务器" echo "3. 配置文件: cherry_studio_config.json" if [[ $create_venv == "y" || $create_venv == "Y" ]]; then echo "" echo "注意: 下次使用前请激活虚拟环境:" echo "source stock_mcp_env/bin/activate" fi

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jwangkun/stock_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server