Skip to main content
Glama

DIY Helper MCP Servers

by jrszilard
functional_serializers.py17.2 kB
"""This module contains related classes and functions for serialization.""" from __future__ import annotations import dataclasses from functools import partial, partialmethod from typing import TYPE_CHECKING, Annotated, Any, Callable, Literal, TypeVar, overload from pydantic_core import PydanticUndefined, core_schema from pydantic_core.core_schema import SerializationInfo, SerializerFunctionWrapHandler, WhenUsed from typing_extensions import TypeAlias from . import PydanticUndefinedAnnotation from ._internal import _decorators, _internal_dataclass from .annotated_handlers import GetCoreSchemaHandler @dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True) class PlainSerializer: """Plain serializers use a function to modify the output of serialization. This is particularly helpful when you want to customize the serialization for annotated types. Consider an input of `list`, which will be serialized into a space-delimited string. ```python from typing import Annotated from pydantic import BaseModel, PlainSerializer CustomStr = Annotated[ list, PlainSerializer(lambda x: ' '.join(x), return_type=str) ] class StudentModel(BaseModel): courses: CustomStr student = StudentModel(courses=['Math', 'Chemistry', 'English']) print(student.model_dump()) #> {'courses': 'Math Chemistry English'} ``` Attributes: func: The serializer function. return_type: The return type for the function. If omitted it will be inferred from the type annotation. when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. """ func: core_schema.SerializerFunction return_type: Any = PydanticUndefined when_used: WhenUsed = 'always' def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: """Gets the Pydantic core schema. Args: source_type: The source type. handler: The `GetCoreSchemaHandler` instance. Returns: The Pydantic core schema. """ schema = handler(source_type) if self.return_type is not PydanticUndefined: return_type = self.return_type else: try: # Do not pass in globals as the function could be defined in a different module. # Instead, let `get_callable_return_type` infer the globals to use, but still pass # in locals that may contain a parent/rebuild namespace: return_type = _decorators.get_callable_return_type( self.func, localns=handler._get_types_namespace().locals, ) except NameError as e: raise PydanticUndefinedAnnotation.from_name_error(e) from e return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) schema['serialization'] = core_schema.plain_serializer_function_ser_schema( function=self.func, info_arg=_decorators.inspect_annotated_serializer(self.func, 'plain'), return_schema=return_schema, when_used=self.when_used, ) return schema @dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True) class WrapSerializer: """Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization logic, and can modify the resulting value before returning it as the final output of serialization. For example, here's a scenario in which a wrap serializer transforms timezones to UTC **and** utilizes the existing `datetime` serialization logic. ```python from datetime import datetime, timezone from typing import Annotated, Any from pydantic import BaseModel, WrapSerializer class EventDatetime(BaseModel): start: datetime end: datetime def convert_to_utc(value: Any, handler, info) -> dict[str, datetime]: # Note that `handler` can actually help serialize the `value` for # further custom serialization in case it's a subclass. partial_result = handler(value, info) if info.mode == 'json': return { k: datetime.fromisoformat(v).astimezone(timezone.utc) for k, v in partial_result.items() } return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()} UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)] class EventModel(BaseModel): event_datetime: UTCEventDatetime dt = EventDatetime( start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00' ) event = EventModel(event_datetime=dt) print(event.model_dump()) ''' { 'event_datetime': { 'start': datetime.datetime( 2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc ), 'end': datetime.datetime( 2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc ), } } ''' print(event.model_dump_json()) ''' {"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}} ''' ``` Attributes: func: The serializer function to be wrapped. return_type: The return type for the function. If omitted it will be inferred from the type annotation. when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. """ func: core_schema.WrapSerializerFunction return_type: Any = PydanticUndefined when_used: WhenUsed = 'always' def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: """This method is used to get the Pydantic core schema of the class. Args: source_type: Source type. handler: Core schema handler. Returns: The generated core schema of the class. """ schema = handler(source_type) if self.return_type is not PydanticUndefined: return_type = self.return_type else: try: # Do not pass in globals as the function could be defined in a different module. # Instead, let `get_callable_return_type` infer the globals to use, but still pass # in locals that may contain a parent/rebuild namespace: return_type = _decorators.get_callable_return_type( self.func, localns=handler._get_types_namespace().locals, ) except NameError as e: raise PydanticUndefinedAnnotation.from_name_error(e) from e return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) schema['serialization'] = core_schema.wrap_serializer_function_ser_schema( function=self.func, info_arg=_decorators.inspect_annotated_serializer(self.func, 'wrap'), return_schema=return_schema, when_used=self.when_used, ) return schema if TYPE_CHECKING: _Partial: TypeAlias = 'partial[Any] | partialmethod[Any]' FieldPlainSerializer: TypeAlias = 'core_schema.SerializerFunction | _Partial' """A field serializer method or function in `plain` mode.""" FieldWrapSerializer: TypeAlias = 'core_schema.WrapSerializerFunction | _Partial' """A field serializer method or function in `wrap` mode.""" FieldSerializer: TypeAlias = 'FieldPlainSerializer | FieldWrapSerializer' """A field serializer method or function.""" _FieldPlainSerializerT = TypeVar('_FieldPlainSerializerT', bound=FieldPlainSerializer) _FieldWrapSerializerT = TypeVar('_FieldWrapSerializerT', bound=FieldWrapSerializer) @overload def field_serializer( field: str, /, *fields: str, mode: Literal['wrap'], return_type: Any = ..., when_used: WhenUsed = ..., check_fields: bool | None = ..., ) -> Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT]: ... @overload def field_serializer( field: str, /, *fields: str, mode: Literal['plain'] = ..., return_type: Any = ..., when_used: WhenUsed = ..., check_fields: bool | None = ..., ) -> Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT]: ... def field_serializer( *fields: str, mode: Literal['plain', 'wrap'] = 'plain', # TODO PEP 747 (grep for 'return_type' on the whole code base): return_type: Any = PydanticUndefined, when_used: WhenUsed = 'always', check_fields: bool | None = None, ) -> ( Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT] | Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT] ): """Decorator that enables custom field serialization. In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list. ```python from pydantic import BaseModel, field_serializer class StudentModel(BaseModel): name: str = 'Jane' courses: set[str] @field_serializer('courses', when_used='json') def serialize_courses_in_order(self, courses: set[str]): return sorted(courses) student = StudentModel(courses={'Math', 'Chemistry', 'English'}) print(student.model_dump_json()) #> {"name":"Jane","courses":["Chemistry","English","Math"]} ``` See [the usage documentation](../concepts/serialization.md#serializers) for more information. Four signatures are supported: - `(self, value: Any, info: FieldSerializationInfo)` - `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)` - `(value: Any, info: SerializationInfo)` - `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)` Args: fields: Which field(s) the method should be called on. mode: The serialization mode. - `plain` means the function will be called instead of the default serialization logic, - `wrap` means the function will be called with an argument to optionally call the default serialization logic. return_type: Optional return type for the function, if omitted it will be inferred from the type annotation. when_used: Determines the serializer will be used for serialization. check_fields: Whether to check that the fields actually exist on the model. Returns: The decorator function. """ def dec(f: FieldSerializer) -> _decorators.PydanticDescriptorProxy[Any]: dec_info = _decorators.FieldSerializerDecoratorInfo( fields=fields, mode=mode, return_type=return_type, when_used=when_used, check_fields=check_fields, ) return _decorators.PydanticDescriptorProxy(f, dec_info) # pyright: ignore[reportArgumentType] return dec # pyright: ignore[reportReturnType] if TYPE_CHECKING: # The first argument in the following callables represent the `self` type: ModelPlainSerializerWithInfo: TypeAlias = Callable[[Any, SerializationInfo[Any]], Any] """A model serializer method with the `info` argument, in `plain` mode.""" ModelPlainSerializerWithoutInfo: TypeAlias = Callable[[Any], Any] """A model serializer method without the `info` argument, in `plain` mode.""" ModelPlainSerializer: TypeAlias = 'ModelPlainSerializerWithInfo | ModelPlainSerializerWithoutInfo' """A model serializer method in `plain` mode.""" ModelWrapSerializerWithInfo: TypeAlias = Callable[[Any, SerializerFunctionWrapHandler, SerializationInfo[Any]], Any] """A model serializer method with the `info` argument, in `wrap` mode.""" ModelWrapSerializerWithoutInfo: TypeAlias = Callable[[Any, SerializerFunctionWrapHandler], Any] """A model serializer method without the `info` argument, in `wrap` mode.""" ModelWrapSerializer: TypeAlias = 'ModelWrapSerializerWithInfo | ModelWrapSerializerWithoutInfo' """A model serializer method in `wrap` mode.""" ModelSerializer: TypeAlias = 'ModelPlainSerializer | ModelWrapSerializer' _ModelPlainSerializerT = TypeVar('_ModelPlainSerializerT', bound=ModelPlainSerializer) _ModelWrapSerializerT = TypeVar('_ModelWrapSerializerT', bound=ModelWrapSerializer) @overload def model_serializer(f: _ModelPlainSerializerT, /) -> _ModelPlainSerializerT: ... @overload def model_serializer( *, mode: Literal['wrap'], when_used: WhenUsed = 'always', return_type: Any = ... ) -> Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT]: ... @overload def model_serializer( *, mode: Literal['plain'] = ..., when_used: WhenUsed = 'always', return_type: Any = ..., ) -> Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT]: ... def model_serializer( f: _ModelPlainSerializerT | _ModelWrapSerializerT | None = None, /, *, mode: Literal['plain', 'wrap'] = 'plain', when_used: WhenUsed = 'always', return_type: Any = PydanticUndefined, ) -> ( _ModelPlainSerializerT | Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT] | Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT] ): """Decorator that enables custom model serialization. This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields. An example would be to serialize temperature to the same temperature scale, such as degrees Celsius. ```python from typing import Literal from pydantic import BaseModel, model_serializer class TemperatureModel(BaseModel): unit: Literal['C', 'F'] value: int @model_serializer() def serialize_model(self): if self.unit == 'F': return {'unit': 'C', 'value': int((self.value - 32) / 1.8)} return {'unit': self.unit, 'value': self.value} temperature = TemperatureModel(unit='F', value=212) print(temperature.model_dump()) #> {'unit': 'C', 'value': 100} ``` Two signatures are supported for `mode='plain'`, which is the default: - `(self)` - `(self, info: SerializationInfo)` And two other signatures for `mode='wrap'`: - `(self, nxt: SerializerFunctionWrapHandler)` - `(self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)` See [the usage documentation](../concepts/serialization.md#serializers) for more information. Args: f: The function to be decorated. mode: The serialization mode. - `'plain'` means the function will be called instead of the default serialization logic - `'wrap'` means the function will be called with an argument to optionally call the default serialization logic. when_used: Determines when this serializer should be used. return_type: The return type for the function. If omitted it will be inferred from the type annotation. Returns: The decorator function. """ def dec(f: ModelSerializer) -> _decorators.PydanticDescriptorProxy[Any]: dec_info = _decorators.ModelSerializerDecoratorInfo(mode=mode, return_type=return_type, when_used=when_used) return _decorators.PydanticDescriptorProxy(f, dec_info) if f is None: return dec # pyright: ignore[reportReturnType] else: return dec(f) # pyright: ignore[reportReturnType] AnyType = TypeVar('AnyType') if TYPE_CHECKING: SerializeAsAny = Annotated[AnyType, ...] # SerializeAsAny[list[str]] will be treated by type checkers as list[str] """Annotation used to mark a type as having duck-typing serialization behavior. See [usage documentation](../concepts/serialization.md#serializing-with-duck-typing) for more details. """ else: @dataclasses.dataclass(**_internal_dataclass.slots_true) class SerializeAsAny: """Annotation used to mark a type as having duck-typing serialization behavior. See [usage documentation](../concepts/serialization.md#serializing-with-duck-typing) for more details. """ def __class_getitem__(cls, item: Any) -> Any: return Annotated[item, SerializeAsAny()] def __get_pydantic_core_schema__( self, source_type: Any, handler: GetCoreSchemaHandler ) -> core_schema.CoreSchema: schema = handler(source_type) schema_to_update = schema while schema_to_update['type'] == 'definitions': schema_to_update = schema_to_update.copy() schema_to_update = schema_to_update['schema'] schema_to_update['serialization'] = core_schema.simple_ser_schema('any') return schema __hash__ = object.__hash__

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jrszilard/diy-helper-mcp-servers'

If you have feedback or need assistance with the MCP directory API, please join our Discord server