Skip to main content
Glama

DIY Helper MCP Servers

by jrszilard
embeddings.py12.4 kB
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. from __future__ import annotations import array import base64 from typing import Union, Iterable, cast from typing_extensions import Literal import httpx from .. import _legacy_response from ..types import embedding_create_params from .._types import Body, Omit, Query, Headers, NotGiven, SequenceNotStr, omit, not_given from .._utils import is_given, maybe_transform from .._compat import cached_property from .._extras import numpy as np, has_numpy from .._resource import SyncAPIResource, AsyncAPIResource from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper from .._base_client import make_request_options from ..types.embedding_model import EmbeddingModel from ..types.create_embedding_response import CreateEmbeddingResponse __all__ = ["Embeddings", "AsyncEmbeddings"] class Embeddings(SyncAPIResource): @cached_property def with_raw_response(self) -> EmbeddingsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return EmbeddingsWithRawResponse(self) @cached_property def with_streaming_response(self) -> EmbeddingsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return EmbeddingsWithStreamingResponse(self) def create( self, *, input: Union[str, SequenceNotStr[str], Iterable[int], Iterable[Iterable[int]]], model: Union[str, EmbeddingModel], dimensions: int | Omit = omit, encoding_format: Literal["float", "base64"] | Omit = omit, user: str | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> CreateEmbeddingResponse: """ Creates an embedding vector representing the input text. Args: input: Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for all embedding models), cannot be an empty string, and any array must be 2048 dimensions or less. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens. In addition to the per-input token limit, all embedding models enforce a maximum of 300,000 tokens summed across all inputs in a single request. model: ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. dimensions: The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models. encoding_format: The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). user: A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ params = { "input": input, "model": model, "user": user, "dimensions": dimensions, "encoding_format": encoding_format, } if not is_given(encoding_format): params["encoding_format"] = "base64" def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse: if is_given(encoding_format): # don't modify the response object if a user explicitly asked for a format return obj if not obj.data: raise ValueError("No embedding data received") for embedding in obj.data: data = cast(object, embedding.embedding) if not isinstance(data, str): continue if not has_numpy(): # use array for base64 optimisation embedding.embedding = array.array("f", base64.b64decode(data)).tolist() else: embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call] base64.b64decode(data), dtype="float32" ).tolist() return obj return self._post( "/embeddings", body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, post_parser=parser, ), cast_to=CreateEmbeddingResponse, ) class AsyncEmbeddings(AsyncAPIResource): @cached_property def with_raw_response(self) -> AsyncEmbeddingsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return AsyncEmbeddingsWithRawResponse(self) @cached_property def with_streaming_response(self) -> AsyncEmbeddingsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return AsyncEmbeddingsWithStreamingResponse(self) async def create( self, *, input: Union[str, SequenceNotStr[str], Iterable[int], Iterable[Iterable[int]]], model: Union[str, EmbeddingModel], dimensions: int | Omit = omit, encoding_format: Literal["float", "base64"] | Omit = omit, user: str | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> CreateEmbeddingResponse: """ Creates an embedding vector representing the input text. Args: input: Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for all embedding models), cannot be an empty string, and any array must be 2048 dimensions or less. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens. In addition to the per-input token limit, all embedding models enforce a maximum of 300,000 tokens summed across all inputs in a single request. model: ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. dimensions: The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models. encoding_format: The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). user: A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ params = { "input": input, "model": model, "user": user, "dimensions": dimensions, "encoding_format": encoding_format, } if not is_given(encoding_format): params["encoding_format"] = "base64" def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse: if is_given(encoding_format): # don't modify the response object if a user explicitly asked for a format return obj if not obj.data: raise ValueError("No embedding data received") for embedding in obj.data: data = cast(object, embedding.embedding) if not isinstance(data, str): continue if not has_numpy(): # use array for base64 optimisation embedding.embedding = array.array("f", base64.b64decode(data)).tolist() else: embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call] base64.b64decode(data), dtype="float32" ).tolist() return obj return await self._post( "/embeddings", body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, post_parser=parser, ), cast_to=CreateEmbeddingResponse, ) class EmbeddingsWithRawResponse: def __init__(self, embeddings: Embeddings) -> None: self._embeddings = embeddings self.create = _legacy_response.to_raw_response_wrapper( embeddings.create, ) class AsyncEmbeddingsWithRawResponse: def __init__(self, embeddings: AsyncEmbeddings) -> None: self._embeddings = embeddings self.create = _legacy_response.async_to_raw_response_wrapper( embeddings.create, ) class EmbeddingsWithStreamingResponse: def __init__(self, embeddings: Embeddings) -> None: self._embeddings = embeddings self.create = to_streamed_response_wrapper( embeddings.create, ) class AsyncEmbeddingsWithStreamingResponse: def __init__(self, embeddings: AsyncEmbeddings) -> None: self._embeddings = embeddings self.create = async_to_streamed_response_wrapper( embeddings.create, )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jrszilard/diy-helper-mcp-servers'

If you have feedback or need assistance with the MCP directory API, please join our Discord server