"""Gemini model provider implementation."""
import base64
import logging
import os
import time
from typing import Optional
from google import genai
from google.genai import types
from .base import ModelCapabilities, ModelProvider, ModelResponse, ProviderType, create_temperature_constraint
logger = logging.getLogger(__name__)
class GeminiModelProvider(ModelProvider):
"""Google Gemini model provider implementation."""
# Model configurations using ModelCapabilities objects
SUPPORTED_MODELS = {
"gemini-2.0-flash": ModelCapabilities(
provider=ProviderType.GOOGLE,
model_name="gemini-2.0-flash",
friendly_name="Gemini (Flash 2.0)",
context_window=1_048_576, # 1M tokens
max_output_tokens=65_536,
supports_extended_thinking=True, # Experimental thinking mode
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
supports_json_mode=True,
supports_images=True, # Vision capability
max_image_size_mb=20.0, # Conservative 20MB limit for reliability
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
max_thinking_tokens=24576, # Same as 2.5 flash for consistency
description="Gemini 2.0 Flash (1M context) - Latest fast model with experimental thinking, supports audio/video input",
aliases=["flash-2.0", "flash2"],
),
"gemini-2.0-flash-lite": ModelCapabilities(
provider=ProviderType.GOOGLE,
model_name="gemini-2.0-flash-lite",
friendly_name="Gemin (Flash Lite 2.0)",
context_window=1_048_576, # 1M tokens
max_output_tokens=65_536,
supports_extended_thinking=False, # Not supported per user request
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
supports_json_mode=True,
supports_images=False, # Does not support images
max_image_size_mb=0.0, # No image support
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
description="Gemini 2.0 Flash Lite (1M context) - Lightweight fast model, text-only",
aliases=["flashlite", "flash-lite"],
),
"gemini-2.5-flash": ModelCapabilities(
provider=ProviderType.GOOGLE,
model_name="gemini-2.5-flash",
friendly_name="Gemini (Flash 2.5)",
context_window=1_048_576, # 1M tokens
max_output_tokens=65_536,
supports_extended_thinking=True,
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
supports_json_mode=True,
supports_images=True, # Vision capability
max_image_size_mb=20.0, # Conservative 20MB limit for reliability
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
max_thinking_tokens=24576, # Flash 2.5 thinking budget limit
description="Ultra-fast (1M context) - Quick analysis, simple queries, rapid iterations",
aliases=["flash", "flash2.5"],
),
"gemini-2.5-pro": ModelCapabilities(
provider=ProviderType.GOOGLE,
model_name="gemini-2.5-pro",
friendly_name="Gemini (Pro 2.5)",
context_window=1_048_576, # 1M tokens
max_output_tokens=65_536,
supports_extended_thinking=True,
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
supports_json_mode=True,
supports_images=True, # Vision capability
max_image_size_mb=32.0, # Higher limit for Pro model
supports_temperature=True,
temperature_constraint=create_temperature_constraint("range"),
max_thinking_tokens=32768, # Max thinking tokens for Pro model
description="Deep reasoning + thinking mode (1M context) - Complex problems, architecture, deep analysis",
aliases=["pro", "gemini pro", "gemini-pro"],
),
}
# Thinking mode configurations - percentages of model's max_thinking_tokens
# These percentages work across all models that support thinking
THINKING_BUDGETS = {
"minimal": 0.005, # 0.5% of max - minimal thinking for fast responses
"low": 0.08, # 8% of max - light reasoning tasks
"medium": 0.33, # 33% of max - balanced reasoning (default)
"high": 0.67, # 67% of max - complex analysis
"max": 1.0, # 100% of max - full thinking budget
}
# Model-specific thinking token limits
MAX_THINKING_TOKENS = {
"gemini-2.0-flash": 24576, # Same as 2.5 flash for consistency
"gemini-2.0-flash-lite": 0, # No thinking support
"gemini-2.5-flash": 24576, # Flash 2.5 thinking budget limit
"gemini-2.5-pro": 32768, # Pro 2.5 thinking budget limit
}
def __init__(self, api_key: str, **kwargs):
"""Initialize Gemini provider with API key."""
super().__init__(api_key, **kwargs)
self._client = None
self._token_counters = {} # Cache for token counting
@property
def client(self):
"""Lazy initialization of Gemini client."""
if self._client is None:
self._client = genai.Client(api_key=self.api_key)
return self._client
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific Gemini model."""
# Resolve shorthand
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
raise ValueError(f"Unsupported Gemini model: {model_name}")
# Check if model is allowed by restrictions
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
# IMPORTANT: Parameter order is (provider_type, model_name, original_name)
# resolved_name is the canonical model name, model_name is the user input
if not restriction_service.is_allowed(ProviderType.GOOGLE, resolved_name, model_name):
raise ValueError(f"Gemini model '{resolved_name}' is not allowed by restriction policy.")
# Return the ModelCapabilities object directly from SUPPORTED_MODELS
return self.SUPPORTED_MODELS[resolved_name]
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
thinking_mode: str = "medium",
images: Optional[list[str]] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using Gemini model."""
# Validate parameters
resolved_name = self._resolve_model_name(model_name)
self.validate_parameters(model_name, temperature)
# Prepare content parts (text and potentially images)
parts = []
# Add system and user prompts as text
if system_prompt:
full_prompt = f"{system_prompt}\n\n{prompt}"
else:
full_prompt = prompt
parts.append({"text": full_prompt})
# Add images if provided and model supports vision
if images and self._supports_vision(resolved_name):
for image_path in images:
try:
image_part = self._process_image(image_path)
if image_part:
parts.append(image_part)
except Exception as e:
logger.warning(f"Failed to process image {image_path}: {e}")
# Continue with other images and text
continue
elif images and not self._supports_vision(resolved_name):
logger.warning(f"Model {resolved_name} does not support images, ignoring {len(images)} image(s)")
# Create contents structure
contents = [{"parts": parts}]
# Prepare generation config
generation_config = types.GenerateContentConfig(
temperature=temperature,
candidate_count=1,
)
# Add max output tokens if specified
if max_output_tokens:
generation_config.max_output_tokens = max_output_tokens
# Add thinking configuration for models that support it
capabilities = self.get_capabilities(model_name)
if capabilities.supports_extended_thinking and thinking_mode in self.THINKING_BUDGETS:
# Get model's max thinking tokens and calculate actual budget
model_config = self.SUPPORTED_MODELS.get(resolved_name)
if model_config and model_config.max_thinking_tokens > 0:
max_thinking_tokens = model_config.max_thinking_tokens
actual_thinking_budget = int(max_thinking_tokens * self.THINKING_BUDGETS[thinking_mode])
generation_config.thinking_config = types.ThinkingConfig(thinking_budget=actual_thinking_budget)
# Retry logic with progressive delays
max_retries = 4 # Total of 4 attempts
retry_delays = [1, 3, 5, 8] # Progressive delays: 1s, 3s, 5s, 8s
last_exception = None
for attempt in range(max_retries):
try:
# Generate content
response = self.client.models.generate_content(
model=resolved_name,
contents=contents,
config=generation_config,
)
# Extract usage information if available
usage = self._extract_usage(response)
return ModelResponse(
content=response.text,
usage=usage,
model_name=resolved_name,
friendly_name="Gemini",
provider=ProviderType.GOOGLE,
metadata={
"thinking_mode": thinking_mode if capabilities.supports_extended_thinking else None,
"finish_reason": (
getattr(response.candidates[0], "finish_reason", "STOP") if response.candidates else "STOP"
),
},
)
except Exception as e:
last_exception = e
# Check if this is a retryable error using structured error codes
is_retryable = self._is_error_retryable(e)
# If this is the last attempt or not retryable, give up
if attempt == max_retries - 1 or not is_retryable:
break
# Get progressive delay
delay = retry_delays[attempt]
# Log retry attempt
logger.warning(
f"Gemini API error for model {resolved_name}, attempt {attempt + 1}/{max_retries}: {str(e)}. Retrying in {delay}s..."
)
time.sleep(delay)
# If we get here, all retries failed
actual_attempts = attempt + 1 # Convert from 0-based index to human-readable count
error_msg = f"Gemini API error for model {resolved_name} after {actual_attempts} attempt{'s' if actual_attempts > 1 else ''}: {str(last_exception)}"
raise RuntimeError(error_msg) from last_exception
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text using Gemini's tokenizer."""
self._resolve_model_name(model_name)
# For now, use a simple estimation
# TODO: Use actual Gemini tokenizer when available in SDK
# Rough estimation: ~4 characters per token for English text
return len(text) // 4
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.GOOGLE
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported and allowed."""
resolved_name = self._resolve_model_name(model_name)
# First check if model is supported
if resolved_name not in self.SUPPORTED_MODELS:
return False
# Then check if model is allowed by restrictions
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
# IMPORTANT: Parameter order is (provider_type, model_name, original_name)
# resolved_name is the canonical model name, model_name is the user input
if not restriction_service.is_allowed(ProviderType.GOOGLE, resolved_name, model_name):
logger.debug(f"Gemini model '{model_name}' -> '{resolved_name}' blocked by restrictions")
return False
return True
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
capabilities = self.get_capabilities(model_name)
return capabilities.supports_extended_thinking
def get_thinking_budget(self, model_name: str, thinking_mode: str) -> int:
"""Get actual thinking token budget for a model and thinking mode."""
resolved_name = self._resolve_model_name(model_name)
model_config = self.SUPPORTED_MODELS.get(resolved_name)
if not model_config or not model_config.supports_extended_thinking:
return 0
if thinking_mode not in self.THINKING_BUDGETS:
return 0
max_thinking_tokens = model_config.max_thinking_tokens
if max_thinking_tokens == 0:
return 0
return int(max_thinking_tokens * self.THINKING_BUDGETS[thinking_mode])
def _extract_usage(self, response) -> dict[str, int]:
"""Extract token usage from Gemini response."""
usage = {}
# Try to extract usage metadata from response
# Note: The actual structure depends on the SDK version and response format
if hasattr(response, "usage_metadata"):
metadata = response.usage_metadata
# Extract token counts with explicit None checks
input_tokens = None
output_tokens = None
if hasattr(metadata, "prompt_token_count"):
value = metadata.prompt_token_count
if value is not None:
input_tokens = value
usage["input_tokens"] = value
if hasattr(metadata, "candidates_token_count"):
value = metadata.candidates_token_count
if value is not None:
output_tokens = value
usage["output_tokens"] = value
# Calculate total only if both values are available and valid
if input_tokens is not None and output_tokens is not None:
usage["total_tokens"] = input_tokens + output_tokens
return usage
def _supports_vision(self, model_name: str) -> bool:
"""Check if the model supports vision (image processing)."""
# Gemini 2.5 models support vision
vision_models = {
"gemini-2.5-flash",
"gemini-2.5-pro",
"gemini-2.0-flash",
"gemini-1.5-pro",
"gemini-1.5-flash",
}
return model_name in vision_models
def _is_error_retryable(self, error: Exception) -> bool:
"""Determine if an error should be retried based on structured error codes.
Uses Gemini API error structure instead of text pattern matching for reliability.
Args:
error: Exception from Gemini API call
Returns:
True if error should be retried, False otherwise
"""
error_str = str(error).lower()
# Check for 429 errors first - these need special handling
if "429" in error_str or "quota" in error_str or "resource_exhausted" in error_str:
# For Gemini, check for specific non-retryable error indicators
# These typically indicate permanent failures or quota/size limits
non_retryable_indicators = [
"quota exceeded",
"resource exhausted",
"context length",
"token limit",
"request too large",
"invalid request",
"quota_exceeded",
"resource_exhausted",
]
# Also check if this is a structured error from Gemini SDK
try:
# Try to access error details if available
if hasattr(error, "details") or hasattr(error, "reason"):
# Gemini API errors may have structured details
error_details = getattr(error, "details", "") or getattr(error, "reason", "")
error_details_str = str(error_details).lower()
# Check for non-retryable error codes/reasons
if any(indicator in error_details_str for indicator in non_retryable_indicators):
logger.debug(f"Non-retryable Gemini error: {error_details}")
return False
except Exception:
pass
# Check main error string for non-retryable patterns
if any(indicator in error_str for indicator in non_retryable_indicators):
logger.debug(f"Non-retryable Gemini error based on message: {error_str[:200]}...")
return False
# If it's a 429/quota error but doesn't match non-retryable patterns, it might be retryable rate limiting
logger.debug(f"Retryable Gemini rate limiting error: {error_str[:100]}...")
return True
# For non-429 errors, check if they're retryable
retryable_indicators = [
"timeout",
"connection",
"network",
"temporary",
"unavailable",
"retry",
"internal error",
"408", # Request timeout
"500", # Internal server error
"502", # Bad gateway
"503", # Service unavailable
"504", # Gateway timeout
"ssl", # SSL errors
"handshake", # Handshake failures
]
return any(indicator in error_str for indicator in retryable_indicators)
def _process_image(self, image_path: str) -> Optional[dict]:
"""Process an image for Gemini API."""
try:
if image_path.startswith("...
header, data = image_path.split(",", 1)
mime_type = header.split(";")[0].split(":")[1]
return {"inline_data": {"mime_type": mime_type, "data": data}}
else:
# Handle file path
from utils.file_types import get_image_mime_type
if not os.path.exists(image_path):
logger.warning(f"Image file not found: {image_path}")
return None
# Detect MIME type from file extension using centralized mappings
ext = os.path.splitext(image_path)[1].lower()
mime_type = get_image_mime_type(ext)
# Read and encode the image
with open(image_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode()
return {"inline_data": {"mime_type": mime_type, "data": image_data}}
except Exception as e:
logger.error(f"Error processing image {image_path}: {e}")
return None